CMR : B=13!-11! chia hết cho 55
CMR
A : 8^10 -8^9-8^8 chia hết cho 55
B: 81^7-27^9-9^13 chia hết cho 45
C: 7^6+7^5-7^4 chia hết cho 11
D: 10^9+10^8+10^7 chia hết cho 555
Cho a, b thuộc Z. CMR:
a) Nếu 2a+ b chia hết cho 13 và 5a -4b chia hết cho 13. CMR a-6b chia hết cho 13.
b) Nếu a0b chia hết cho 7 thì a+4b chia hết cho 7.
c) Nếu 3a+4b chia hết cho 11 thì a+5b chia hết cho 11.
Các bạn giúp mk vs!!!
Ta co:\(\hept{\begin{cases}2a+b⋮13\\5a-4b⋮13\end{cases}\Rightarrow\hept{\begin{cases}-2.\left(2a+b\right)⋮13\\5a-4b⋮13\end{cases}}}\)
\(\Rightarrow\hept{\begin{cases}-4a-2b⋮13\\5a-4b⋮13\end{cases}}\Rightarrow-4a-2b+5a-4b=a-6b\)
DK: a,b thuoc N, a > 0
\(\overline{a0b}=100a+b⋮7\)
\(\Rightarrow4.\left(100a+b\right)⋮7\)
\(\Rightarrow400a+4b⋮7\)
\(\Rightarrow a+4b⋮7\text{ vi }399a⋮7\)
\(\)
Ta co: \(3a+4b⋮11\Rightarrow7.\left(3a+4b\right)⋮11\)
\(\Rightarrow21a+28b⋮11\)
\(\text{ma }21a+28b+a+5b=22a+33b⋮11\)
\(\Rightarrow a+5b⋮11\text{ vi }21a+28b⋮11\)
chứng tỏ B= 13!-11! chia hết cho 55
\(\left\{{}\begin{matrix}13!=1..5..11.12.13\Rightarrow13!⋮\left(5.11\right)\\11!=1...5..11\Rightarrow11!⋮55\\\Rightarrow\left(13!-11!\right)⋮55\end{matrix}\right.\) tính chất chia hết tổng, hiệu.
Nội suy đề bắt chia hết cho 155
\(A=13!-11!=11!\left(12.13-1\right)=11!.155\Rightarrow A⋮155\)
CMR
a, 7^6+7^5-7^4 chia hết cho 55
b, 81^7-27^9+3^29 chia hết cho 33
c, 8^12-2^33-2^30 chia hết cho 55
d, 10^9+10^8+10^7 chia hết cho 555
e, 9^11-9^10-9^9/639 thuộc N
f, 81^7-27^9-9^13 chia hết cho 45
g, (36^36 - 9^2000)chia hết cho 45
h, 24^54*54^24*2^10 chia hết cho72^63
a)
\(7^6+7^5-7^4\)
\(=7^4\cdot\left(7^2+7-1\right)\)
\(=7^4\cdot55⋮55\left(đpcm\right)\)
Mấy câu kia tương tự, dài quá
Bài 3 : Chứng minh rằng:
a. A=88+220 chia hết cho 17
b. B= 13! - 11! chia hết cho 55
a.
Ta có: 88=(23)8=224
\(\Rightarrow\)A=88+ 220=224+220=220.(24+1)
\(\Rightarrow\)A= 220.17\(⋮\)17
b.
Ta có:
13!\(⋮\)5; 11!\(⋮\)5\(\Rightarrow\)13!-11!\(⋮\)5\(\Rightarrow\)B\(⋮\)5 (1)
Lại có:
B=13!-11!= 11!.12.13-11!=11!.(12.13-1)\(⋮\)11
\(\Rightarrow\)B\(⋮\)11 (2)
Mà 5.11=55 và (5,11)=1 (3) ( (5,11)=1 là cách viết tắt biểu diễn cho: 5 và 11 nguyên tố cùng nhau)
Từ (1);(2);(3) suy ra:
B\(⋮\)55
Bài 1: CMR
a) 7^6 + 7^5 - 7^4 chia hết cho 55
b) 16^5 + 2^15 chia hết cho 33
c) 81^7 - 27^9 - 9^13 chia hết cho 405
7^6 + 7^5 - 7^4
= 7^4.(7^2+7-1)
= 7^4. (49+7-1)
=7^4.55
Có 55 chia hết cho 55
Mà 7^4 thuộc n
Suy ra 7^4.55 chia hết cho 55
7^6 +7^5 -7^4 chia hết cho 55
13!-11! chia hết cho 55
sbt và st đều có 5*11 nên chia hết cho 55
em k chắc, mới học lớp 4 thôi
13!=1.2.3.4.5.6.7.8.9.10.11.12.13
=6227020800
11!=1.2.3.4.5.6.7.8.9.10.11=39916800
Nên ta có:
13! -11!=6227020800-39916800
=187104000
=>187104000 chia hết cho 55
Nên 13! -11! Chia hết cho 55
Cả 2 phép đều có 5 và 11. Mà 5 và 11 nguyên tố cùng nhau nên cả 2 phép chia hết cho 5.11=55
Chứng minh rằng: 13! - 11! chia hết cho 55
13! = 1 x 2 x 3 x 4 x 5 x 6 x 7 x 8 x 9 x 10 x 11 x 12 x 13
Ta thấy 13! chia hết cho 5 và 11. (1)
11! = 1 x 2 x 3 x 4 x 5 x 6 x 7 x 8 x 9 x 10 x 11
Ta thấy 11! chia hết cho 5 và 11. (2)
Từ (1) và (2) => 13! - 11! chia hết cho 55 vì ( 5; 11 ) = 1
CMR a)3^10+3^11+3^12 chia hết cho 13
b) 5^100+5^101+5^102 chia hết cho 31
a) \(3^{10}+3^{11}+3^{12}\)
⇔ \(3^{10}\left(1+3+3^2\right)\)
⇔ \(3^{10}.13\)
⇒ \(3^{10}.13\) chia hết cho 13
a) \(3^{10}+3^{11}+3^{12}=3^{10}\left(1+3+3^2\right)=3^{10}\cdot13⋮13\)
b) \(5^{100}+5^{101}+5^{102}=5^{100}\left(1+5+5^2\right)=5^{100}\cdot31⋮31\)