Cho tam giác ABC có trung tuyến AM (A thuộc BC) và BM < AM. Chứng minh: góc A nhọn
Cho tam giác ABC có AB = AC = 5cm, BC = 6cm. Đường trung tuyến AM xuất phát từ đỉnh A của tam giác ABC.
a) Chứng minh △AMB = △AMC và AM là tia phân giác của góc A.
b) Chứng minh AM BC.
c) Tính độ dài các đoạn thẳng BM và AM.
d) Từ M vẽ ME AB (E thuộc AB) và MF AC (F thuộc AC). Tam giác MEF là tam giác gì ? Vì sao ?
a: Xét ΔAMB và ΔAMC có
AM chung
MB=MC
AB=AC
=>ΔAMB=ΔAMC
=>góc BAM=góc CAM
=>AM là phân giác của góc BAC
b: ΔABC cân tại A
mà AM là trung tuyến
nên AM vuông góc BC
c: BM=CM=3cm
=>AM=4cm
Cho tam giác ABC có AB = AC = 5cm , BC = 6cm.Đường trung tuyến AM xuất phát từ đỉnh A của tam giác ABC
a. Chứng minh tam giác AMB = tam giác AMC và AM là tia phân giác của góc A
b. Chứng minh AM vuông góc BC
c. Tính độ dài các đoạn thẳng BM và AM
d. Từ M vẽ ME vuông góc AB ( E thuộc AB ) và MF vuông góc AC ( F thuộc AC ). Tam giác MEF là tam giác gì ? Vì sao ?
~ Meo~ Giúp mình với các bạn ơi ~
Cho tam giác ABC có AB = AC = 5cm, BC = 6cm. Đường trung tuyến AM xuất phát từ đỉnh A của tam giác ABC.
a) Chứng minh ΔAMB = ΔAMC và AM là tia phân giác của góc A.
b) Chứng minh AM
c) Tính độ dài các đoạn thẳng BM và AM.
d) Từ M vẽ ME AB (E thuộc AB) và MF AC (F thuộc AC). Tam giác MEF là tam giác gì? Vì sao?
HELP ME
a. Xét tam giác AMB và tam giác AMC:
AB = AC
AM chung
BM = CM (trung tuyến AM hạ từ A đến BC)
=> tam giác AMB = tam giác AMC
=> góc BAM = góc CAM (2 góc tương ứng)=>AM là tia phân giác của góc BACb. đề bài bị thiếuc. ta có BM = CM(cma) => BM = CM = \(\dfrac{BC}{2}\)= \(\dfrac{6}{2}\)= 3(cm) Áp dụng định lí Pi-ta-go vào tam giác ABM: AB2 = BM2 + AM2=> AM2 = AB2 - BM2 AM2 = 52 - 32 = 25 - 9 = 16(cm)=> AM = 4 cmCho tam giác ABC cân tại A và BAC là góc nhọn. Vẽ trung tuyến AM (M thuộc BC) . Từ M kẻ MH vuông góc AB (H thuộc AB) và MK vuông góc AC (K thuộc AC)
a, Chứng minh: MH = MK
b, Chứng minh: AM là trung trực của HK
c, Gọi I là giao điểm của AC và MH. Xác định trực tâm của tam giác AMI
d, Từ B kẻ Bx vuông góc BA và Cy vuông góc CA . Bx cắt Cy tại D.
e, Chứng minh: A, M, D thẳng hàng e, Tính độ dài của đoạn thẳng IM khi AK = 2cm và BAC= 60 độ
a: Ta có: ΔABC cân tại A
mà AM là đường trung tuyến
nên AM vừa là đường cao vừa là đường phân giác
Xét ΔAHM vuông tại H và ΔAKM vuông tại K có
AM chung
\(\widehat{HAM}=\widehat{KAM}\)
Do đó: ΔAHM=ΔAKM
Suy ra: MH=MK
b: Ta có: ΔAHK cân tại A
mà AM là đường phân giác
nên AM là đường trung trực của HK
1.Cho tam giac ABC cân tại A. E,F thuộc BC sao cho BE=EF=FC
a, So sánh góc BAE,EAF,FAC
2.Cho tam giác ABC có M là trung điểm của BC nối AM. Chứng minh
a, AB>BM thì góc BAC nhọn
b, AM<BM thì BAC tù
Cho tam giác ABC có AB =AC=5cm, BC=6cm Đường trung tuyến AM xuất phát từ đỉnh Acủa tam giác ABC
a chứng minh tam giác AMB = tam giác AMC là tia phân giác của góc A
b chứng minh AM vuông BC
c tính độ dài các đọn thằng BM và AM
Giải
Xét tam giác AMB và tam giác AMC
AM chung
AB=AC(gt)
MB=MC(AM là trung tuyến của tam giác ABC)
Vậy tam giác AMB= tam giác AMC(c.c.c)
Suy ra :góc BAM = góc CAM
Suy ra AM là hân giác của gócA
Ý b
Vì tam giác AMB= tam giác AMC(cmt)
suy ra
góc AMB= góc AMC
có góc AMB+AMC=180 độ
mà góc AMB=góc AMC=90 độ
Suy ra AM vuông góc với BC
tam giác AMB vuông tại B
Ý c
Vì MB=MC=3cm
Áp dụng định lý PI-TA-GO và tam giác vuông ta có
AB^2=MB^2+MA^2
25=9+MA^2
MA^2=16
MA=4cm
Cho tam giác vuông tại A,có BM là tia phân giác của góc ABC(M thuộc AC).Kẻ MH vuông góc BC(H thuộc BC)
a)chứng minh tam giác AMB=tam giác HBM
b)chứng minh AM=HM
C)so sánh AM và MC
a) Xét hai tam giác vuông: \(\Delta AMB\) và \(\Delta HMB\) có:
BM là cạnh chung
\(\widehat{ABM}=\widehat{HBM}\) (do BM là phân giác của \(\widehat{ABC}\))
\(\Rightarrow\Delta AMB=\Delta HMB\) (cạnh huyền-góc nhọn)
b) Do \(\Delta AMB=\Delta HMB\) (cmt)
\(\Rightarrow AM=HM\) (hai cạnh tương ứng)
c) \(\Delta MHC\) vuông tại H
\(\Rightarrow MC\) là cạnh huyền nên là cạnh lớn nhất
\(\Rightarrow HM< MC\)
Lại có HM = AM (cmt)
\(\Rightarrow AM< MC\)
Bài 1: Cho tam giác ABC cân tại A có các đường trung tuyến BE và CD . Chứng minh rằng BE bằng CD
Bài 2: Cho tam giác ABC có đường trung tuyến BE và CD, biết BE = CD . Chứng minh rằng tam giác ABC cân tại A
Bài 3: Cho tam giác ABC chứng minh rằng a) Nếu tam giác ABC vuông góc tại A , có trung tuyến AM =1/2 BC
b) Nếu trung tuyến AM =1/2 BC thì tam giác ABC vuông góc tại A
Cho tam giác ABC có AB = AC = 5cm,BC = 6cm. Đường trung tuyến AM xuất phát từ đỉnh Acủa tam giác ABC
a, Chứng minh △AMB = △AMC và AM là tia phân giác của góc A
b, Chứng minh AM⊥BC
c, Tính độ dài các đoạn thẳng BM và AM
a)xét △AMB = △AMC có
AB = AC
AMchung
CM=BM(vì AM là Đường trung tuyến)
=>△AMB = △AMC(c-c-c)
=>góc BAM = góc CAM
=> AM là tia phân giác của góc A
theo c/m câu a ta có △AMB = △AMC
=>góc BMA=góc CMA
=>góc BMA=góc CMA=\(\dfrac{180}{2}=90^o\)(2 góc kề bù)
=> AM⊥BC