Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Lê Văn Phong
Xem chi tiết
phạm quang anh
Xem chi tiết
Hà Nhật Minh
16 tháng 5 2021 lúc 21:12

\(A=\frac{1}{1^2}+\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{50^2}\\ A< \frac{1}{1\times2}+\frac{1}{2\times3}+\frac{1}{3\times4}+\frac{1}{4\times5}+...+\frac{1}{50\times51}\\ A< 1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{50}-\frac{1}{51}\\ A< 1-\frac{1}{51}=\frac{49}{51}\\ \Rightarrow A< 2\)

Khách vãng lai đã xóa
hoàng bảo
Xem chi tiết
nguyenducminh
Xem chi tiết
Thanh Tùng DZ
26 tháng 4 2017 lúc 17:39

a) \(A=\frac{1}{1^2}+\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{50^2}\)

\(A< 1+\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{49.50}\)

\(=1+1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{49}-\frac{1}{50}\)

\(=1+1-\frac{1}{50}\)

\(=2-\frac{1}{50}< 2\)

\(\Rightarrow A< 2\)

b) Ta thấy : 21 = 3 .7        ( 3 ; 7 ) = 1

để chứng minh B \(⋮\)21 , ta cần chứng minh B \(⋮\)3 và 7

Ta có :

B = 21 + 22 + 23 + 24 + ... + 230

B = ( 2 + 22 ) + ( 23 + 24 ) + ... + ( 229 + 230 )

B = 2 . ( 1 + 2 ) + 23 . ( 1 + 2 ) + ... + 229 . ( 1 + 2 )

B = 2 . 3 + 23 . 3 + ... + 229 . 3

B = ( 2 + 23 + ... + 229 ) . 3 \(⋮\)3 ( 1 )

Lại có : B = 21 + 22 + 23 + 24 + ... + 230 

B = ( 21 + 22 + 23 ) + ( 24 + 25 + 26 ) + ... + ( 228 + 229 + 230 )

B = 2 . ( 1 + 2 + 22 ) + 24 . ( 1 + 2 + 22 ) + ... + 228 . ( 1 + 2 + 22 )

B = 2 . 7 + 24 . 7 + ... + 228 . 7

B = ( 2 + 24 + ... + 228 ) . 7 \(⋮\)7 ( 2 )

Từ ( 1 ) và ( 2 ) \(\Rightarrow\)\(⋮\)21

nguyễn đức huynh
4 tháng 3 2018 lúc 20:03

oh my goh

Le trong hieu
Xem chi tiết
Đinh Khánh Nam
18 tháng 8 2021 lúc 9:17

ta có:1+3x2+..........+3x50  [50=5x10 mà số nào nhân với 10 cũng có kq số cuối là 0]

Ta có dấu hiệu chia hết cho2 và 5 là số cuối bằng 0 [đã lập luận ở trên]⇒A cũng như 8.A chắc chắn sẽ chia hết cho 2, 5

baohoang
Xem chi tiết
Candy
Xem chi tiết
Member lỗi thời :>>...
25 tháng 8 2021 lúc 12:42

\(M=\frac{3}{4}\cdot\frac{8}{9}\cdot\frac{15}{16}\cdot\cdot\cdot\cdot\frac{9999}{10000}\)

\(=\frac{1.3}{2.2}\cdot\frac{2.4}{3.3}\cdot\frac{3.5}{4.4}\cdot\cdot\cdot\cdot\frac{99.101}{100.100}\)

\(=\frac{1}{2}\cdot\frac{101}{100}=\frac{101}{200}\)

Khách vãng lai đã xóa
Member lỗi thời :>>...
25 tháng 8 2021 lúc 12:44

Xét vế phải :

\(VP=\frac{99}{50}-\frac{97}{49}+...+\frac{7}{4}-\frac{5}{3}+\frac{3}{2}-1\)

\(=2.\left(\frac{99}{100}-\frac{97}{98}+...+\frac{7}{8}-\frac{5}{6}+\frac{3}{4}-\frac{1}{2}\right)\)

\(=2\left[\left(1-\frac{1}{100}\right)-\left(1-\frac{1}{98}\right)+...+\left(1-\frac{1}{4}\right)-\left(1-\frac{1}{2}\right)\right]\)

\(=2\left(\frac{1}{2}-\frac{1}{4}+\frac{1}{6}-\frac{1}{8}+...+\frac{1}{98}-\frac{1}{100}\right)\)

\(=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{49}-\frac{1}{50}\)

\(=\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{49}+\frac{1}{50}\right)-2\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{50}\right)\)

\(=\left(1+\frac{1}{2}+\frac{1}{2}+\frac{1}{4}+...+\frac{1}{25}+\frac{1}{26}+...+\frac{1}{50}\right)-\left(1+\frac{1}{2}+...+\frac{1}{25}\right)\)

\(=\frac{1}{26}+\frac{1}{27}+...+\frac{1}{49}+\frac{1}{50}=VT\Rightarrow\left(đpcm\right)\)

Khách vãng lai đã xóa
Mai Công Minh
Xem chi tiết
Le Thi Khanh Huyen
16 tháng 4 2016 lúc 18:41

\(=\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{49.50}\)

\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{49}-\frac{1}{50}\)

\(=1-\frac{1}{50}\)\(<1\)

\(\Rightarrow\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{49.50}<1\)

Vậy \(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{49.50}<1\)

VICTORY_ Trần Thạch Thảo
16 tháng 4 2016 lúc 18:50

\(=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{49.50}\)

\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{49}-\frac{1}{50}\)

\(=1-\frac{1}{50}\)

\(=\frac{49}{50}\)

\(\Rightarrow\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{49.50}<1\)

Nguyễn Hương Giang
Xem chi tiết
Giang Hoang
19 tháng 2 2016 lúc 20:29

batngo

MONKEY D LUFFY
19 tháng 2 2016 lúc 23:05

banh

Lovers
20 tháng 2 2016 lúc 18:44

Sao lại chẳng có quy luật thế này

Ở đầu mẫu là 1;2;3;4;5;.... Cuối lại là 2100-1