Tìm các số nguyên dương n thỏa mãn n4 + 2n là số nguyên tố
tìm tất cả số nguyên dương n thỏa mãn n5+n4+1 là số nguyên tố
tìm tất cả số nguyên dương n thỏa mãn n5+n4+1 là số nguyên tố
Ta có: \(n^5+n^4+1\)
\(=n^5-n^3+n^2+n^4-n^2+n+n^3-n+1\)
\(=n^2\left(n^3-n+1\right)+n\left(n^3-n+1\right)+\left(n^3-n+1\right)\)
\(=\left(n^3-n+1\right)\left(n^2+n+1\right)\)
Do \(n^5+n^4+1\) là số nguyên tố nên: \(\left[{}\begin{matrix}n^3-n+1=1\\n^2+n+1=1\end{matrix}\right.\) trong hai số phải có 1 số là 1 và số còn lại là số nguyên tố:
TH1: \(n^3-n+1=1\)
\(\Leftrightarrow n^3-n=0\)
\(\Leftrightarrow n\left(n^2-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}n=0\\n=1\\n=-1\end{matrix}\right.\)
Với
\(n=0\Rightarrow0^5+0^4+1=1\) (loại)
\(n=1\Rightarrow1^5+1^4+1=3\) (nhận)
\(n=-1\Rightarrow\left(-1\right)^5+\left(-1\right)^4+1=1\) (loại)
TH1: \(n^2+n+1=1\)
\(\Leftrightarrow n^2+n=0\)
\(\Leftrightarrow\left[{}\begin{matrix}n=0\\n=-1\end{matrix}\right.\left(\text{loại}\right)\)
Vậy \(n=1\) là số thỏa mãn để \(n^5+n^4+1\) là số nguyên tố
Tìm các số nguyên dương n thỏa mãn: n\(^2\) + 2n − 8 là một số nguyên tố
Ta có n2 + 2n - 8 = (n + 4)(n - 2)
Vì n > 0 => n + 4 > 0
=> Để n2 + 2n - 8 là số nguyên tố
thì n - 2 = 1 => n = 3
Thử lại 32 + 2.3 - 8 = 7 (đúng)
Vậy n = 3 thì n2 + 2n - 8 là số nguyên tố
Tìm tất cả các số nguyên dương n thỏa mãn n+1 và 3n+6 là các số lập phương,đồng thời 2n+5 là số nguyên tố.
Đặt \(3n+6=x^3,n+1=y^3\)vì \(n\inℕ^∗\)nên \(x>1,y>3\)và x,y nguyên dương
\(\left(3n+6\right)-\left(n+1\right)=x^3-y^3\)
\(\Leftrightarrow2n+5=\left(x-y\right)\left(x^2+xy+y^2\right)\)(1)
Vì 2n+5 là số nguyên tố nên chỉ có 2 ước là 1 và 2n+5 mà (x-y) và (x2+xy+y2) cũng là 2 ước của 2n-5 nên:
\(\orbr{\begin{cases}x-y=1,x^2+xy+y^2=2n+5\\x^2+xy+y^2=1,x-y=2n+5\end{cases}}\)mà \(x>1,y>3\)nên vế dưới không thể xảy ra.
Vậy \(\hept{\begin{cases}x=y+1\\x^2+xy+y^2=2n+5\end{cases}}\)thay vế trên vào vế dưới\(\Rightarrow\left(y+1\right)^2+y\left(y+1\right)+y^2=2n+5\)
\(\Rightarrow3y^2+3y+1=2n+5\)
Vậy ta xét \(\hept{\begin{cases}3y^2+3y+1=2n+5\\y^3=n+1\Rightarrow2y^3=2n+2\end{cases}}\)trừ 2 biểu thức vế theo vế:
\(\Rightarrow-2y^3+3y^2+3y+1=3\Leftrightarrow\left(y+1\right)\left(y-2\right)\left(1-2y\right)=0\)
Vì nguyên dương nên nhận y=2--->n=7
Tìm tất cả các số nguyên dương thỏa mãn 2n2+3n+1 là số chính phương và n+5 là số nguyên tố
Tìm các số nguyên n thỏa mãn n4 + 8n + 11 có thể viết thành tích của hai hay nhiều số nguyên dương liên tiếp.
tìm tất cả các bộ (n,k,p), với n,k là các số nguyên lớn hơn 1 và p là 1 số nguyên tố thỏa mãn \(n^5+n^4-2n^3-2n^2+1=p^k\)
Ta có:
\(n^5+n^4-2n^3-2n^2+1=p^k\Leftrightarrow\left(n^2+n-1\right)\left(n^3-n-1\right)=p^k\)
Từ gt \(\Rightarrow n,k\ge2\)
Ta có:
\(\left\{{}\begin{matrix}n^3-n-1>1;n^2+n-1>1,\forall n\ge2\\\left(n^3-n-1\right)-\left(n^2+n-1\right)=\left(n+1\right)n\left(n-2\right)\ge0,\forall n\ge2\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}n^3-n-1=p^r\\n^2+n-1=p^s\end{matrix}\right.\) trong đó \(\left\{{}\begin{matrix}r\ge s>0\\r+s=k\end{matrix}\right.\)
\(\Rightarrow n^3-n-1⋮n^2+n-1\)
\(\Rightarrow n^3-n-1-\left(n-1\right)\left(n^2+n-1\right)⋮n^2+n-1\)
\(\Rightarrow n-2⋮n^2+n-1\) (1)
Mặt khác:
\(\left(n^2+n-1\right)-\left(n-2\right)=n^2+1>0,\forall n\)
\(\Rightarrow n^2+n-1>n-2\ge0,\forall n\ge2\) (2)
Từ (1) và (2) => n=2 => \(p^k=25\Rightarrow\left\{{}\begin{matrix}p=5\\k=2\end{matrix}\right.\)
Vậy bộ số (n,k,p)=(2,2,5)
\(...\Leftrightarrow\left(n^2+n-1\right)\left(n^3-n-1\right)=p^k\).
Do đó \(\left\{{}\begin{matrix}n^2+n-1=p^v\\n^3-n-1=p^u\end{matrix}\right.\left(v,u\in N;v+u=k\right)\).
+) Với n = 2 ta có \(p^k=25=5^2\Leftrightarrow p=5;k=2\)
+) Với n > 2 ta có \(n^3-n-1>n^2+n-1\Rightarrow v>u\Rightarrow n^3-n-1⋮n^2+n-1\)
\(\Rightarrow\left(n^2+n-1\right)\left(n-1\right)+n-2⋮n^2+n-1\)
\(\Rightarrow n-2⋮n^2+n-1\)
\(\Rightarrow\left(n-2\right)\left(n+3\right)⋮n^2+n-1\)
\(\Rightarrow6⋮n^2+n-1\).
Không tồn tại n > 2 thoả mãn
Vậy...
Tìm tất cả các cặp số nguyên dương (m, n) thỏa mãn 6m + 2n + 2 là số chính phương.
Cho số nguyên dương n thỏa mãn 6n2+5n+1 là số chính phương
a) Chứng minh n chia hết cho 40
b) Chứng minh 5n+3 là hợp số
c) Tìm n nguyên dương sao cho 2n+9 là số nguyên tố