Cho x^2+y^2+z^2 +1/x^2+1/y^2/+1/z^2 = 6
Tính C = x^2014+y^2015+z^2016
tinh gia tri cua bieu thuc :N=xy^2.z^3+x^2.y^3.z^4+...........+x^2014.y^2015.z^2016 tai x=-1;y=-1;z=-1
Các bsnj giups mình với
Tính giá trị của biểu thức: N= xy2z3+x2y3z4+x3y4z5+.............+x2014y2015z2016 tại x= -1 , y= -1 , z= -1.
Tính giá trị của biểu thức: N = x.y2 z3+ x2 y3 z4+ x3 y4 z5 ... x 2014y2015 z2016 tại: x -1; y -1; z -1
nếu bn ko thấy đc hình ảnh, bn vào thống kê hỏi đáp của mik để tìm ảnh nhé
#Châu's ngốc
x+y+z=1 ; x2+y2+z2=1 ; x3+y3+z3=1
tìm tổng S=x2014+y2015+x2016
Đề phải là x2014+y2015+z2016 chứ nhỉ? Đề có sai không vậy ạ?
x+y+z=1 ; x2+y2+z2=1 ; x3+y3+z3=1
tìm tổng S=x2014+y2015+x2016
Tính P=\(x^{2014}+y^{2015}+z^{2016}\) biết x,y,z thỏa mãn điều kiện sau:
\(\frac{x^2+y^2+z^2}{a^2+b^2+c^2}=\frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}\)
\(\frac{x^2+y^2+z^2}{a^2+b^2+c^2}=\frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}\)
\(\Leftrightarrow\left(\frac{x^2}{a^2}-\frac{x^2}{a^2+b^2+c^2}\right)+\left(\frac{y^2}{b^2}-\frac{y^2}{a^2+b^2+c^2}\right)+\left(\frac{z^2}{c^2}-\frac{z^2}{a^2+b^2+c^2}\right)=0\)
\(\Leftrightarrow\left(x^2.\frac{b^2+c^2}{a^2+b^2+c^2}\right)+\left(y^2.\frac{a^2+c^2}{a^2+b^2+c^2}\right)+\left(z^2.\frac{a^2+b^2}{a^2+b^2+c^2}\right)=0\)
Vì a,b,c khác
=>Dấu bằng xảy ra khi x=y=z=0
\(\Rightarrow x^{2014}+y^{2015}+z^{2016}=0^{2014}+0^{2015}+0^{2016}=0\)
Phân tích đa thức thành nhân tử rồi tính giá trị biểu thức
A=3x^2-2(x-y)^2-3y^2 tại x=4,y=-4
B=4(x-2)(x+1)+(2x-4)^2+(x+1)^2 tại x=-1/2
C=x^2(y-z)+y^2(z-x)+z^2(x+y) tại x=6,y=5,z=4
D=x^2017-10x^2016+10x^2015-...-10x^2+10x-10 với x=9
a: A=3(x^2-y^2)-2(x-y)^2
=3(x+y)(x-y)-2(x-y)^2
=(x-y)(3x+3y-2x+2y)
=(x-y)(x+5y)
=(4+4)(4-5*4)
=8*(-16)=-128
b: \(B=\left(2x-4\right)^2+2\cdot\left(2x-4\right)\left(x+1\right)+\left(x+1\right)^2\)
=(2x-4+x+1)^2
=(3x-3)^2
Khi x=-1/2 thì B=(-3/2-3)^2=(-9/2)^2=81/4
c: \(C=x^2\left(5-4\right)+y^2\left(4-6\right)+z^2\left(6+4\right)\)
=x^2-2y^2+10z^2
=6^2-2*5^2+10*4^2
=146
d: x=9 thì x+1=10
\(D=x^{2017}-x^{2016}\left(x+1\right)+x^{2015}\left(x+1\right)-...-x^2\left(x+1\right)+x\left(x+1\right)-\left(x+1\right)\)
=x^2017-x^2017+x^2016+...-x^3-x^2+x^2+x-x-1
=-1
a: A=3(x^2-y^2)-2(x-y)^2
=3(x+y)(x-y)-2(x-y)^2
=(x-y)(3x+3y-2x+2y)
=(x-y)(x+5y)
=(4+4)(4-5*4)
=8*(-16)=-128
Cho \(M=\frac{X\left(yz-x^2\right)+y\left(zx-y^2\right)+z\left(xy-z^2\right)}{\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2}\)
Tính giá trị của M tại \(x=2014^{2015}-20142015;y=20142015-2015^{2014};z=2015^{2014}-2014^{2015}\)
Cho x \ 2014 = y / 2015 = z / 2016
Chứng minh rằng 4 (x - y) (y - z ) = (z - x )^2
Đặt t=x−z, dễ thấy 0≤t≤x−y⇒t=k(x−y),k∈[0;1]. Ta có:
f(x)+f(y)−f(z)−f(x+y−z)=f(x)+f(y)−f(x−t)−f(y+t)=f(x)+f(y)−f(x−k(x−y))−f(y+k(x−y))=f(x)+f(y)−f((1−k)x+ky)−f(kx+(1−k)y)≥f(x)+f(y)−(1−k)f(x)−kf(y)−kf(x)−(1−k)f(y)=0(Q.E.D