Cho tam giác vuông ABC vuông góc tại A. Có cạnh AB dài 6cm, cạnh AC dài 8cm. Tính độ dài cạnh BC.
Cho tam giác ABC vuông tại A có AB = 6cm, AC = 8cm. a) Tính độ dài cạnh BC. b)Kẻ AH vuông góc BC. Biết AH = 4,8cm. Tính độ dài các đoạn BH, CH .
Bài 7: Cho tam giác ABC vuông tại A (AB < AC). BK là tia phân giác của góc ABC, K thuộc cạnh AC. Kẻ KI vuông góc với BC tại I.
a) Tính độ dài cạnh BC biết AB = 6cm; AC = 8cm.
b) Chứng minh 2 tam giác ABK = IBK . Từ đó suy ra KA = KI.
c) Kẻ AD vuông góc với BC. Chứng minh: AI là tia phân giác của góc DAK.
d) Gọi H là giao điểm của BK và AD. Chứng minh: HB + HC < AB + AC.
Giúp mình với!
a: BC=căn 6^2+8^2=10cm
b: Xét ΔBAK vuông tại A và ΔBIK vuông tại I có
BK chung
góc ABK=góc IBK
=>ΔBAK=ΔBIK
=>KA=KI
c: góc DAI+góc BIA=90 độ
góc CAI+góc BAI=90 độ
mà góc BIA=góc BAI
nên góc DAI=góc CAI
=>AI là phân giác của góc DAC
Cho tam giác vuông ABC vuông tại A. Biết độ dài ba cạnh là: AB=6cm, AC=8cm và BC=10cm. Tính chiều cao tương ứng với cạnh đáy BC
Gọi AH là cc tương ứng với BC
Áp dụng HTL: \(AH=\dfrac{AB\cdot AC}{BC}=4,8\left(cm\right)\)
Cho tam giác ABC vuông tại A có cạnh AB=6cm,AC=8cm. Kẻ AH vuông góc với BC tại H. Khi đó độ dài của cạnh BH là.....cm
Giúp mình với ^^
B. Phần tự luận (7 điểm)
Cho tam giác ABC vuông tại A có AB = 6cm, AC = 8cm.
a. Tính độ dài cạnh BC
a. Áp dụng định lí Pytago trong tam giác ABC ta có:
BC2 = AB2 + AC2 = 62 + 82 = 100 ⇒ BC = 10cm
Cho tam giác ABC vuông tại A có AB=6cm,AC=8cm. Kẻ đường cao AH vuông góc với BC (H thuộc BC).
a) Tính độ dài BC.
b) Tia phản giác góc HAC cắt cạnh BC tại D. Qua D kẻ DK vuông góc với AC (K thuộc AC). Chứng minh: tam giác AHD = tam giác AKD.
c) Chứng minh: tam giác BAD cân.
d) Tia phân giác góc BAH cắt cạnh BC tại E. Chứng minh: AB+AC=BC+DE.
a) Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:
\(BC^2=AB^2+AC^2\)
\(\Leftrightarrow BC^2=6^2+8^2=100\)
hay BC=10(cm)
Vậy: BC=10cm
b) Xét ΔAHD vuông tại H và ΔAKD vuông tại K có
AD chung
\(\widehat{HAD}=\widehat{KAD}\)(AD là tia phân giác của \(\widehat{HAK}\))
Do đó: ΔAHD=ΔAKD(cạnh huyền-góc nhọn)
c) Ta có: ΔADH vuông tại H(gt)
nên \(\widehat{HDA}+\widehat{HAD}=90^0\)(hai góc nhọn phụ nhau)
hay \(\widehat{BDA}+\widehat{HAD}=90^0\)(2)
Ta có: \(\widehat{BAD}+\widehat{CAD}=\widehat{BAC}\)(tia AD nằm giữa hai tia AB,AC)
nên \(\widehat{BAD}+\widehat{KAD}=90^0\)(3)
Từ (2) và (3) suy ra \(\widehat{BDA}=\widehat{BAD}\)
Xét ΔBAD có \(\widehat{BDA}=\widehat{BAD}\)(cmt)
nên ΔBAD cân tại B(Định lí đảo của tam giác cân)
Cho Tam giác ABC vuông tại A ,có AB=6cm,AC=8cm
a)Tính độ dài cạnh BC và chu vi hình tam giác ABC
b)Đường phân giác của góc B cắt AC tại D.Vẽ DH(vuông góc)B(H thuộc BC)
Chứng minh:tam giác ABD = HBD
c)Chứng minh DA <DC
a) Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:
\(BC^2=AB^2+AC^2\)
\(\Leftrightarrow BC^2=6^2+8^2=100\)
hay BC=10(cm)
Chu vi tam giác ABC là:
\(C_{ABC}=AB+AC+BC=6+8+10=24\left(cm\right)\)
b) Xét ΔABD vuông tại A và ΔHBD vuông tại H có
BD chung
\(\widehat{ABD}=\widehat{HBD}\)(BD là tia phân giác của \(\widehat{ABH}\))
Do đó: ΔABD=ΔHBD(Cạnh huyền-góc nhọn)
c) Ta có: ΔABD=ΔHBD(cmt)
nên DA=DH(hai cạnh tương ứng)
mà DH<DC(ΔDHC vuông tại H)
nên DA<DC
cho tam giác abc vuông tại a có các cạnh ab=6cm ac=8cm bc=10cm
a) tính diện tích tam giác abc
b) tính độ dài đường cao ah hạ từ đỉnh a xuống đáy bc
c) trên cạnh ab lấy điểm m sao cho ma=2mb. trên cạnh bc lấy điểm n sao cho nb=nc. kéo dài mn và ac cắt nhau tại p. tính độ dài đoạn cp
Cho hình chữ nhật ABCD có cạnh BC =6cm,AB =8cm. Đường thẳng kẻ từ B vuông góc với AC tại E , cắt cạnh AD tại F
a) Tính độ dài các đoạn thẳng AC,AE,BE
b)Tính độ dài các cạnh và diện tích tam giác ABF
Áp dụng định lý Pitago cho tam giác vuông ABC
\(AC=\sqrt{AB^2+BC^2}=10\left(cm\right)\)
Áp dụng hệ thức lượng cho tam giác vuông ABC với đường cao BE:
\(AB^2=AE.AC\Rightarrow AE=\dfrac{AB^2}{AC}=6,4\left(cm\right)\)
\(AB.AC=BE.AC\Rightarrow AE=\dfrac{AB.AC}{BC}=4,8\left(cm\right)\)
b.
Ta có: \(EC=AC-AE=3,6\left(cm\right)\)
Do AB song song CF, theo định lý Talet:
\(\dfrac{CF}{AB}=\dfrac{CE}{AE}\Rightarrow CF=\dfrac{AB.CE}{AE}=4,5\left(cm\right)\)
\(\Rightarrow DF=DC-CF=8-4,5=3,5\left(cm\right)\)
Áp dụng định lý Pitago cho tam giác vuông ADF:
\(AF=\sqrt{AD^2+DF^2}=\dfrac{\sqrt{193}}{2}\left(cm\right)\)
Pitago tam giác vuông BCF:
\(BF=\sqrt{BC^2+CF^2}=7,5\left(cm\right)\)
Kẻ FH vuông góc AB \(\Rightarrow ADFH\) là hình chữ nhật (tứ giác 3 góc vuông)
\(\Rightarrow FH=AD=6\left(cm\right)\)
\(S_{ABF}=\dfrac{1}{2}FH.AB=\dfrac{1}{2}.6.8=24\left(cm^2\right)\)