\(Cho\Delta ABC,gọi,D,E\)theo thứ tự là trung điểm của AB, AC. Trên tia đối DE lấy điểm F sao cho DE=EF. Chứng minh:
a) \(\Delta EAD=\Delta ECF\)
b) \(DE//BC\)
Cho tam giác ABC, gọi D, E theo thứ tự là trung điểm của AB, AC. Trên tia DE lấy điểm F sao cho DE = EF. Chứng minh:
a) △EAD = △EDF
b) DE // BC
Giúp mik vs miK cần gấp
b: Xét ΔABC có
D là trung điểm của AB
E là trung điểm của AC
Do đó: DE là đường trung bình của ΔABC
SUy ra: DE//BC
Cho tam giác ABC, gọi D, E theo thứ tự là trung điểm của AB, AC. Trên tia DE lấy điểm F sao cho DE = EF. Chứng minh:
a) △EAD = △EDF
b) DE // BC
( Mọi người vẽ hình và giải giúp minh nha) Thanks mọi người
Cho tam giác ABC, gọi D, E theo thứ tự là trung điểm của AB, AC. Trên tia DE lấy điểm F sao cho DE = EF. Chứng minh:
a) △EAD = △EDF
b) DE // BC
( Mọi người vẽ hình và giải giúp minh nha) Thanks mọi người
Cho △ ABC. Gọi D; E theo thứ tự là trung điểm của AB, AC. Trên tia đối của tia ED lấy điểm F sao cho EF = ED. Chứng minh:
a) BD = CF ; AB // CF.
b) △BCD = △FDC.
c) DE // BC.
a: Xét tứ giác ADCF có
E là trung điểm của AC
E là trung điểm của DF
Do đó: ADCF là hình bình hành
Suy ra: CF//AD và CF=AD
hay CF//AB và CF=BD
b: Xét ΔBCD và ΔFDC có
BC=FD
BD=FC
CD chung
Do đó: ΔBCD=ΔFDC
c: Xét ΔACB có
D là trung điểm của AB
E là trung điểm của AC
Do đó: DE là đường trung bình của ΔACB
Suy ra: DE//BC
Cho \(\Delta ABC\), gọi D, E theo thứ tự là trung điểm của AB và AC. Trên tia đối của tia DE lấy điểm F sao cho EF=ED
a) Chứng minh: AF=DC
b) C/m: DE= \(\frac{1}{2}\) BC ; DE // BC
Cho tam giác ABC, gọi D là trung điểm của cạnh AB, E là trung điểm của cạnh AC. Trên tia đối của tia ED lấy điểm F sao cho DE = EF. Chứng minh rằng:
a) ΔAED = ΔCEF
b) AB // CF
c) ΔBDC = Δ FCD
d) DE //BC và DE = \(\frac{1}{2}\)BC
a) Xét tam giác AEDvà tam giác CÈ có :
AE=EC(vì E là trung điểm của AC )
góc DAE=góc FCE(so le trong)
DE=EF( vì E là trung điểm của F )
=> 2 tam giác bằng nhau theo trường hợp cgc(dpcm)
b)xét tam giác AED và tam giác CEF (cmt)
=> góc ADE=góc F
=> AB song song CF( có 2 góc bằng nhau ở vị trí so le trong )
c) xét tam giác BDC và tam giác FCD là
DB=CF (cmt )
góc BDC= góc F (cmt)
DC chung
=> 2 tam giác bằng nhau theo trương hợp cgc
d)tam giác BDC =tam giác FCD (cmt)
=> góc c = góc d
=> DE song song BC ( có 2 góc = nhau ở vị trí so le trong )
tam giác BDC = bằng tam giác FCD
=> BC=DF
=> DE = 1/2 DF
mà DE==BC
=> DE = 1/2 Bc (dpcm)
Dúng đó nha tich đúng cho mình nha ! thanks bạn nha nha !
a) Xét ΔAED và ΔCEF có:
AE = CE (suy từ gt)
\(\widehat{AED}\) = \(\widehat{CEF}\) (đối đỉnh)
ED = EF (gt)
=> ΔAED = ΔCEF (c.g.c).
b) Vì ΔAED = ΔCEF nên \(\widehat{DAE}\) = \(\widehat{ECF}\) (2 góc t ư )
mà 2 góc này ở vị trí so le trong nên AB // CF.
c) Vì ΔAED = ΔCEF nên AD = FC (2 cạnh t ư)
mà AD = DB (suy từ gt) => DB = FC
Do AB // CF hay DB // CF nên \(\widehat{BDC}\) = \(\widehat{DCF}\) (so le trong)
Xét ΔBDC và ΔFCD có:
BD = FC ( cm trên)
\(\widehat{BDC}\) = \(\widehat{DCF}\) (cm trên)
CD chung
=> ΔBDC = ΔFCD (c.g.c)
d) Lại do ΔBDC = ΔFCD nên \(\widehat{BCD}\) = \(\widehat{FDC}\) (2 góc t ư); DF = BC ( 2 cạnh t ư)
mà 2 góc này ở vị trí so le trong nên DE // BC
mà DE = \(\frac{1}{2}\)EF => DE = \(\frac{1}{2}\)BC.
Cho tam giác ABC gọi D, E theo thứ tự là trung điểm của cạnh BC, AC. Trên tia đối của DE lấy điểm F sao cho DF=DE. Cmr:
a)\(\Delta DCE=\Delta DBF\)
b)BF=AE
c)EC//BF
Chứng minh:
a. Xét hai tam giác DCE và DBF có :
DE= DF ( gt )
góc CDE = góc BDF ( đối đỉnh )
CD= BD ( gt )
=> tam giác DCE = tam giác DBF ( c.g.c)
b. Tam giác DCE = tam giác DBF ( theo a )
=> EC = BF
Mà : EC = AE ( vì E là trung điểm của AC)
=> AE= BF ( dpcm)
c. Tam giác DCE = tam giác DBF ( theo a )
=> góc CED = góc BFD
Mà hai góc ở vị trí so le trong => EC // BF
Cho tam giác ABC. Trên tia đối của tia AC lấy D sao cho AD=AC, trên tia đối của tia AB lấy ddiemr E sao cho AE = AB. Nối D với E
a,Cmr \(\Delta ABC=\Delta AED\)
b, Cm BC//DE
c, Gọi m là trung điểm của BC, N là tring điểm của DE . Chứng minh ba điểm M,A,N thẳng hàng
cho \(\Delta ABC\) , trên tia đối AC lấy điểm D sao cho AD = AC , trên tia đối AB lấy E sao cho AE = AB nối D với E . C/m
a) \(\Delta ABC=\Delta AED\)
b) BC // DE
c) gọi M là trung điểm BC , N trung điểm DE c/m 3 điểm M , A , N thẳng hàng
Ta có hình vẽ:
a/ Xét tam giác ABC và tam giác AED có:
BA = AE (GT)
góc BAC = góc DAE (đối đỉnh)
CA = AD (GT)
=> tam giác ABC = tam giác AED (c.g.c)
b/ Ta có: tam giác ABC = tam giác AED (câu a)
=> góc DEA = góc ABC (2 góc tương ứng)
Mà 2 góc này đang ở vị trí so le trong
=> BC // DE (đpcm)
c/ Ta có: BC // DE (đã chứng minh trên)
=> góc DNA = góc AMC so le trong
=> đường MN qua A
hay NA trùng AM
hay N,A,M thẳng hàng