A=5-52-53-...-56 là bội của 30
Chứng minh : A = 5+52+53+...+58 là bội của 30
A = 5 + 52 + 53 +...+ 58
A = (5 + 52) +( 53 + 54) +...+ ( 57 + 58)
A = 30 + 52.(5 + 52) +...+ 56.(5 + 52)
A = 30.( 1 + 52 +...+ 56) (đpcm)
Chứng tỏ rằng: Giá trị của biểu thức A = 5 + 5 2 + 5 3 + . . . + 5 8 là bội của 30
Ta có: A = 5 + 5 2 + 5 3 + 5 4 + 5 5 + 5 6 + 5 7 + 5 8
= 5 + 5 2 + 5 2 5 + 5 2 + 5 4 5 + 5 2 + 5 6 5 + 5 2
= 30 + 5 2 . 30 + 5 4 . 30 + 5 6 . 30
= 30 . ( 1 + 5 2 + 5 4 + 5 6 ) ⋮ 30
Vậy A là bội của 30
Chứng tỏ rằng: Giá trị của biểu thức A = 5 + 5 2 + 5 3 + . . . . + 5 8 là bội của 30.
Chứng tỏ rằng:
a) Giá trị của biểu thức A = 5 + 5 2 + 5 3 + . . . + 5 8 là bội của 30.
b) Giá trị của biểu thức B = 3 + 3 3 + 3 5 + 3 7 + . . . + 3 29 là bội của 273
a, A = 5 + 5 2 + 5 3 + . . . + 5 8
= 5(1+5)+ 5 2 (1+5)+ 5 3 (1+5)+...+ 5 7 (1+5)
= 30+5.30+ 5 2 .30+...+ 5 6 .30
= 30.(1+5+ 5 2 +..+ 5 6 )
Vậy A là bội của 30
b, B = 3 + 3 3 + 3 5 + 3 7 + . . . + 3 29
= 3 1 + 3 2 + 3 4 + 3 7 1 + 3 2 + 3 4 +...+ 3 27 1 + 3 2 + 3 4
= 273+273. 3 6 +...+ 3 26 .273
= 273.(1+ 3 6 +...+ 3 26 )
Vậy B là bội của 273
Chứng tỏ rằng:
a) Giá trị của biểu thức A = 5 + 5 2 + 5 3 + … + 5 8 là bội của 30.
b) Giá trị của biểu thức B = 3 + 3 3 + 3 5 + 3 7 + … + 3 29 là bội của 273
cho B=1=5+52 +53+...+5101 chứng minh rằng B là bội chung của 6 và 31
Cho M = 51 + 52 + 53 ... + 519 + 520 + 521
Chứng minh M là bội của 31
Giúp e nha mọi người
M = 51 + 52 + 53 + ... + 519 + 520 + 521
M = (51 + 52 + 53) + (54 + 55 + 56 ) + ... + (519 + 520 + 521)
M = 5( 1 + 5 + 52) + 54(1 + 5 + 52) + ... + 519(1 + 5 + 52)
M = 5.31 + 54.31 + ... + 519.31
M = 31(5 + 54 + ... + 519) ⋮ 31 (ĐPCM)
cho S =5+52+53+54+55+56+...+52012
chứng tỏ S chia hết cho 65
S = 5 + 5² + 5³ + 5⁴ + ... + 5²⁰¹²
= (5 + 5² + 5³ + 5⁴) + (5⁵ + 5⁶ + 5⁷ + 5⁸) + ... + (5²⁰⁰⁹ + 5²⁰¹⁰ + 5²⁰¹¹ + 5²⁰¹²)
= 780 + 5⁴.(5 + 5² + 5³ + 5⁴) + ... + 5²⁰⁰⁸.(5 + 5² + 5³ + 5⁴)
= 780 + 5⁴.780 + ... + 5²⁰⁰⁸.780
= 65.12 + 5⁴.65.12 + ... + 5²⁰⁰⁸.65.12
= 65.12(1 + 5⁴ + ... + 5²⁰⁰⁸) ⋮ 65
Vậy S ⋮ 65
\(S=5\left(1+5+5^2+5^3\right)+5^5\left(1+5+5^2+5^3\right)+...+5^{2009}\left(1+5+5^2+5^3\right)\)
\(=156\left(5+5^5+...+5^{2009}\right)\)
\(=780\cdot\left(1+5^4+...+5^{2008}\right)⋮65\)
Thực hiện phép tính:
a) 5 3 : 5 2 + 2 2 . 3 ;
b) 4 3 . 125 - 125 : 5 2 ;
c) 6 2 . 28 + 72 . 6 2 ;
d) 5 6 : 5 4 + 3 . 3 2 - 8 0