điều kiện để giá trị phân thức 2021x+8 / 176-2x
1. Cho phân thức 2x^2 - 4x 8/x^3 8a) Với điều kiện nào của x thì giá trị của phân thức được xác định.b) Hãy rút gọn phân thức c) Tính giá trị của phân thức tại x=2d) Tìm giá trị của x để giá trị của phân thức bằng 2
a) ĐKXĐ: \(x\ne-2\)
b) Ta có: \(\dfrac{2x^2-4x+8}{x^3+8}\)
\(=\dfrac{2\left(x^2-2x+4\right)}{\left(x+2\right)\left(x^2-2x+4\right)}\)
\(=\dfrac{2}{x+2}\)
c) Vì x=2 thỏa mãn ĐKXĐ
nên Thay x=2 vào biểu thức \(\dfrac{2}{x+2}\), ta được:
\(\dfrac{2}{2+2}=\dfrac{2}{4}=\dfrac{1}{2}\)
Vậy: Khi x=2 thì giá trị của biểu thức là \(\dfrac{1}{2}\)
d) Để \(\dfrac{2}{x+2}=2\) thì x+2=1
hay x=-1(nhận)
Vậy: Để \(\dfrac{2}{x+2}=2\) thì x=-1
cho phân thức E=\(\dfrac{5x+5}{2x^2+2x}\)
a/ Tìm điều kiện của x để phân thức được xác định
b/ Tìm giá trị của x để giá trị của phân thức bằng 1
a: ĐKXĐ: x<>0; x<>-1
b: E=5(x+1)/2x(x+1)=5/2x
b: Để E=1 thì 5/2x=1
=>2x=5
=>x=5/2
1. Cho phân thức 2x^2 - 4x + 8/x^3+8
a) Với điều kiện nào của x thì giá trị của phân thức được xác định.
b) Hãy rút gọn phân thức
c) Tính giá trị của phân thức tại x=2
d) Tìm giá trị của x để giá trị của phân thức bằng 2
a) \(\frac{2x^2-4x+8}{x^3+8}\Rightarrow\) ĐKXĐ: \(x^3+8\ne0 \Leftrightarrow x^3\ne-8 \Leftrightarrow x\ne-2 \)
b) \(\frac{2x^2-4x+8}{x^3+8}=\frac{2\left(x^2-2x+4\right)}{\left(x+2\right)\left(x^2-2x+4\right)}=\frac{2}{x+2}\)
c) \(\frac{2}{x+2}\Rightarrow f\left(2\right)=\frac{2}{2+2}=\frac{1}{2}\)
d) \(\frac{2}{x+2}=2\)
\(\Leftrightarrow x+2=1\)
\(\Leftrightarrow x=-1\)
Cho phân thức 5x + 5 / 2x mũ 2 + 2x
a) Tìm điều kiện của x để giá trị của phân thức được xác đinh
b) Tìm giá trị của x để giá trị của phân thức =1
hướng dẫn
a) để phan thức xác định thì mẫu khác 0
khi và chỉ khi 2x(x+1) khác 0 đó làm nốt
b) =1 khi và chỉ khi 5x+5=2x^2+2x
chuyển vế -2x^2+3x+5=0 khi và chỉ khi (x+1)(-2x+5)=0 làm nốt
Cho phân thức \(\frac{5x+5}{2x^2+2x}\) :
Câu a )
\(2x^2+2x=2x\left(x+1\right)\ne0\)
\(\Leftrightarrow2x\ne0\) và \(x+1\ne0\)
\(\Leftrightarrow x\ne0\) và \(x\ne-1\)
Câu b )
\(\frac{5x+5}{2x^2+2x}=\frac{5\left(x+1\right)}{2x\left(x+1\right)}=\frac{5}{2x}\)
\(\frac{5}{2x}=1\Leftrightarrow5=2x\Leftrightarrow x=\frac{5}{2}\)
Vì \(\frac{5}{2}\) thỏa mãn với điều kiện của 2 tam giác nên \(x=\frac{5}{2}\)
Chúc bạn học tốt !!!
Cho phân thức 2x - 4 / x2 - 2x
a. Tìm điều kiện xác định và rút gọn phân thức
b. Tính giá trị của x tại x = 26
c. Tìm giá trị của x để phân thức có giá trị = 12
a) ĐKXĐ: x\(\ne\)0, x\(\ne\)2
Ta có:
A= 2x-4/ x2- 2x = 2(x-2)/ x(x-2) = 2/x
Vậy...
b) Ta thấy x=26 thỏa mãn ĐKXĐ
Thay x=26 vào bt A ta được
A= 2/26 = 1/13
Vậy....
c) Với x\(\ne\)0, x\(\ne\)2 ta có A=12 \(\Leftrightarrow\) 2/x =12 \(\Leftrightarrow\) x=1/6
Vậy....
Bài 2: (3 điểm) Cho phân thức \(\dfrac{4x-4}{2x^2-2}\)
a/ Tìm điều kiện của x để giá trị của phân thức được xác định.
b/ Tìm giá trị của x để phân thức có giá trị bằng –2 .
c/ Tìm giá trị của x để phân thức có giá trị là số nguyên.
a) ĐKXĐ: \(x\notin\left\{1;-1\right\}\)
b) Ta có: \(\dfrac{4x-4}{2x^2-2}\)
\(=\dfrac{4\left(x-1\right)}{2\left(x-1\right)\left(x+1\right)}\)
\(=\dfrac{2}{x+1}\)
Để phân thức có giá trị bằng -2 thì \(\dfrac{2}{x+1}=-2\)
\(\Leftrightarrow x+1=-1\)
hay x=-2(thỏa ĐK)
Cho phân thức : \(\frac{5x+5}{2x^2+2x}\)
a/ Tìm điều kiện của x để giá trị của phân thức được xác định
b/ Tìm giá trị của x để giá trị của phân thức bằng 1
Đặt \(\frac{5x+5}{2x^2+2x}=A\)
a/ Để A xác định\(\Leftrightarrow2x^2+2x\ne0\Leftrightarrow2x\left(x+1\right)\ne0\Rightarrow x\ne0;x\ne-1\)
TXĐ:\(x\ne0;x\ne-1\)
b/ Với \(x\ne0;x\ne-1\)ta có \(A=\frac{5x+5}{2x^2+2x}\)
Để A=1\(\Leftrightarrow5x+5=2x^2+2x\)
\(\Leftrightarrow5\left(x+1\right)=2x\left(x+1\right)\)
\(\Leftrightarrow5=2x\)
\(\Rightarrow x=\frac{2}{5}\)( TM )
Cho phân thức \(\frac{5x+5}{2x^2+2x}\)
a) tìm điều kiện của x để giá trị của phân thức xác định
b) tìm x để giá trị phân thức bằng 1
a) Phân thức xác định \(\Leftrightarrow2x^2+2x\ne0\)
\(\Leftrightarrow2x\left(x+1\right)\ne0\)
\(\Rightarrow\orbr{\begin{cases}2x\ne0\\x+1\ne0\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x\ne0\\x\ne-1\end{cases}}\)
b) Để phân thức bằng 1 thì :
\(5x+5=2x^2+2x\)
\(\Leftrightarrow5\left(x+1\right)=2x\left(x+1\right)\)
\(\Leftrightarrow5=2x\)
\(\Leftrightarrow x=\frac{5}{2}\)
Vậy.......
Phân thức xác định
\(\Leftrightarrow2x^2+2x\ne0\)
\(\Leftrightarrow2x\left(x+2\right)\ne0\)
\(\Leftrightarrow\hept{\begin{cases}x\ne0\\x+1\ne0\end{cases}\Leftrightarrow\hept{\begin{cases}x\ne0\\x\ne-1\end{cases}}}\)
Vậy với \(\hept{\begin{cases}x\ne0\\x\ne-1\end{cases}}\) thì phân thức xác định
a) để phân thức xác định <=> 2x2 + 2x khác 0 hay 2x ( x + 1 ) khác 0 => x khác -2x - 1
1.Cho biểu thức C = x³/x²-4 - x/x-2 - 2/x+2
a,tìm giá trị của biến để biểu thức được xác định
b,Tìm x để C=0
c,Tìm giá trị nguyên của x để C nhận giá trị dương
2,cho P = (2+x/2-x + 4x²/x²-4 - 2-x/2+x): x²-3x/2x²-x³
a,Tìm điều kiện của x để giá trị của P được xác định
B, rút gọn P
c,Tính giá trị P với |x-5|=2
d,Tìm x để P<0
3,cho biểu thức B = [x+1/2x-2 + 3/x²-1 - x+3/2x+2]. 4x²-4/5
a,Tìm điều kiện của x để giá trị biểu thức được xác định
b,CMR khi giá trị của biểu thức không phụ thuộc vào giá trị của biến x?
4,Cho phân thức C = 3x²-x/9x²-6x+1
a, tìm điều kiện xác định phân thức
b,tính giá trị phân thức tại x=-8
c,Tìm x để giá trị của phân thức nhận giá trị dương
1.a)\(\frac{x^3}{x^2-4}-\frac{x}{x-2}-\frac{2}{x+2}\)
\(=\frac{x^3}{\left(x+2\right)\left(x-2\right)}-\frac{x}{x-2}-\frac{2}{x+2}\)
Để biểu thức được xác định thì:\(\left(x+2\right)\left(x-2\right)\ne0\)\(\Rightarrow x\ne\pm2\)
\(\left(x+2\right)\ne0\Rightarrow x\ne-2\)
\(\left(x-2\right)\ne0\Rightarrow x\ne2\)
Vậy để biểu thức xác định thì : \(x\ne\pm2\)
b) để C=0 thì ....
1, c , bn Nguyễn Hữu Triết chưa lm xong
ta có : \(/x-5/=2\)
\(\Rightarrow\orbr{\begin{cases}x-5=2\\x-5=-2\end{cases}}\Rightarrow\orbr{\begin{cases}x=7\\x=3\end{cases}}\)
thay x = 7 vào biểu thứcC
\(\Rightarrow C=\frac{4.7^2\left(2-7\right)}{\left(7-3\right)\left(2+7\right)}=\frac{-988}{36}=\frac{-247}{9}\)KL :>...
thay x = 3 vào C
\(\Rightarrow C=\frac{4.3^2\left(2-3\right)}{\left(3-3\right)\left(3+7\right)}\)
=> ko tìm đc giá trị C tại x = 3
chết mk nhìn nhầm phần c bài 2 :
\(2,\left(\frac{2+x}{2-x}+\frac{4x^2}{x^2-4}-\frac{2-x}{2+x}\right):\frac{x^2-3x}{2x^2-x^3}\)
Để P xác định
\(\Rightarrow2-x\ne0\Rightarrow x\ne2\)
\(2+x\ne0\Rightarrow x\ne-2\)
\(x^2-4\ne0\Rightarrow x\ne0\)
\(x^2-3x\ne0\Rightarrow x\ne3\)
b, \(P=\left(\frac{2+x}{2-x}+\frac{4x^2}{\left(2+x\right)\left(2-x\right)}+\frac{2-x}{2+x}\right):\frac{x\left(x-3\right)}{x^2\left(2-x\right)}\)
\(P=\left[\frac{4+4x+x^2}{\left(2-x\right)\left(2+x\right)}-\frac{4x^2}{\left(2+x\right)\left(2-x\right)}-\frac{4-4x+x^2}{\left(2+x\right)\left(2-x\right)}\right].\frac{x\left(2-x\right)}{x-3}\)
\(P=\left[\frac{8x-4x^2}{\left(2-x\right)\left(2+x\right)}\right].\frac{x\left(2-x\right)}{x-3}=\frac{4x\left(2-x\right)}{\left(2-x\right)\left(2+x\right)}.\frac{x\left(2-x\right)}{x-3}\)
\(P=\frac{4x^2\left(2-x\right)}{\left(x-3\right)\left(2+x\right)}\)
d, ĐỂ \(p=\frac{8x^2-4x^3}{x^2-x-6}< 0\)
\(TH1:8x^2-4x^3< 0\)
\(\Rightarrow8x^2< 4x^3\)
\(\Rightarrow2< x\Rightarrow x>2\)
\(TH2:x^2-x-6< 0\Rightarrow x^2< x+6\)