Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
skas ofoficial
Xem chi tiết
Akai Haruma
13 tháng 12 2021 lúc 22:14

Lời giải:
$(2300-22):1+1=2279$

Tổng $A$ là:
$4+\frac{(2300+22).2279}{2}=2645923$. Số này lẻ nên không thể là lũy thừa cơ số 2. 

skas ofoficial
Xem chi tiết
Chanh Xanh
13 tháng 12 2021 lúc 10:04

THI TỰ LÀM

Sunn
13 tháng 12 2021 lúc 10:05

Khiêm tốn, thật thà, dũng cảm :D

skas ofoficial
13 tháng 12 2021 lúc 10:07

cho hỏi đi mừ

thi với thằng em đúng là thất bại khi nó là con gái

 

 

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
10 tháng 3 2019 lúc 3:50

Ta có A = 2A – A = 2( 1 + 2 + 2 2 + 2 3 + . . . + 2 50 ) – ( 1 + 2 + 2 2 + 2 3 + . . . + 2 50 )

2 + 4 + 2 3 + 2 4 + . . . + 2 51  – ( 1 + 2 + 2 2 + 2 3 + . . . + 2 50 )

= 6 + 2 3 + 2 4 + . . . + 2 51  – ( 7 + 2 3 + . . . + 2 50 ) =  2 51 - 1

Suy ra : A + 1 =  2 51

Vậy A+1 là một lũy thừa của 2

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
2 tháng 1 2020 lúc 8:15

Trần Khánh Phương
Xem chi tiết
Toru
26 tháng 10 2023 lúc 21:45

\(A=4+2^2+2^3+...+2^{2006}\)

\(\mathsf{Đặt}:B=2^2+2^3+...+2^{2006}\\2B=2^3+2^4+...+2^{2007}\\2B-B=(2^3+2^4+...+2^{2007})-(2^2+2^3+...+2^{2006})\\B=2^{2007}-2^2\\B=2^{2007}-4\)

Thay \(B=2^{2007}-4\) vào A, ta được:

\(A=4+(2^{2007}-4)\\\Rightarrow A=2^{2007}\)

$\Rightarrow A$ là 1 luỹ thừa của cơ số 2.

Vậy: ...

Nguyễn Thanh Phúc
Xem chi tiết
Nguyễn Lê Phước Thịnh
16 tháng 11 2023 lúc 8:57

loading...  

Lê Trần Khánh Phương
Xem chi tiết
Nguyễn Hoàng Minh
2 tháng 11 2021 lúc 14:42

\(\Rightarrow2A=8+2^3+...+2^{2022}\\ \Rightarrow2A-A=8+2^3+...+2^{2022}-4-2^2-...-2^{2021}\\ \Rightarrow A=8+2^{2022}-4-2^2=8-4-4+2^{2022}=2^{2022}\left(đpcm\right)\)

Lấp La Lấp Lánh
2 tháng 11 2021 lúc 14:43

\(A=2^2+2^2+2^3+...+2^{2021}=2^3+2^4+...+2^{2021}=2^{2022}\left(đpcm\right)\)

Đỗ Ngọc Thiện
29 tháng 11 2022 lúc 10:30

A=2²+2²+2³+...+2²⁰²¹
A2=2(22+22+23+...+22021)
A2=23+23+24+...+22022
A2-A= 23+23+24+...+22022-2²+2²+2³+...+2²⁰²¹
A=23-22+22+22022
A=8-8+22022
A=22022

 

Hồ Lê Phú Lộc
Xem chi tiết
Nguyễn Linh Chi
22 tháng 10 2019 lúc 21:31

Câu hỏi của phamvanquyettam - Toán lớp 6 - Học toán với OnlineMath

Khách vãng lai đã xóa
Trần Vũ Hoàng
Xem chi tiết
༺༒༻²ᵏ⁸
7 tháng 11 2021 lúc 21:54

\(A=4+2^2+2^3+...+2^{2005}\)

\(2A=4+2^2+2^3+...+2^{2006}\)

\(2A-A=\left(4+2^2+2^3+...+2^{2006}\right)-\left(4+2^2+2^3+...+2^{2005}\right)\)

\(A=4+2^2+2^3+...+2^{2006}-4-2^2-2^3-...-2^{2005}\)

\(A=2^{2006}\)

Vậy A là 1 luỹ thừa của cơ số 2

Khách vãng lai đã xóa
༺༒༻²ᵏ⁸
7 tháng 11 2021 lúc 21:57

\(B=5+5^2+...+5^{2021}\)

\(5B=5^2+5^3+...+5^{2022}\)

\(5B-B=\left(5^2+5^3+...+5^{2022}\right)-\left(5+5^2+...+5^{2021}\right)\)

\(4B=5^{2022}-5\)

\(B=\frac{5^{2022}-5}{4}\)

\(B+8=\frac{5^{2022}-5}{4}+8\)

\(B+8=\frac{5^{2022}-5}{4}+\frac{32}{4}\)

\(B+8=\frac{5^{2022}-5+32}{4}\)

\(B+8=\frac{5^{2022}+27}{4}\)

=> B + 8 k thể là số b/ph của 1 số tn 

Khách vãng lai đã xóa