Cho ΔABC vuông tại A. Kẻ AH _|_ BC . Tính AH biết HB = 2cm, HC = 8cm
Cho ΔABC vuông tại A. Kẻ đường vuông góc từ A xuống BC, cắt BC tại H. Tính AH biết HB = 2cm; HC=8cm
( làm cách ngắn nhất có thể nhé!)
Ta có: Tam giác $AHB$ vuông tại $H$ ($AH⊥BC$)
nên $AH^2+HB^2=AB^2$ định lí Pytago
suy ra $AH^2=AB^2-HB^2=AB^2-2^2=AB^2-4$
Tam giác $AHC$ vuông tại $H$ ($AH⊥BC$)
nên $AH^2+HC^2=AC^2$ định lí Pytago
suy ra $AH^2=AC^2-HC^2=AC^2-8^2=AC^2-64$
Tam giác $ABC$ vuông tại $A$
nên $AB^2+AC^2=BC^2$ định lí Pytago
suy ra $AB^2+AC^2=(HB+HC)^2=(2+8)^2=100$
Có: $AH^2=AB^2-4;AH^2=AC^2-64$
Nên $2AH^2=AB^2+AC^2-4-64=100-4-64=32$
suy ra $AH^2=16$ hay $AH=8(cm)$
Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:
\(AH^2=HC\cdot HB\)
\(\Leftrightarrow AH^2=2\cdot8=16\)
hay AH=4(cm)
Vậy: AH=4cm
Cho ΔABC vuông tại A, có AH vuông góc BC. Tính AB biết HB = 2cm; HC=8cm, AC=6cm
\(BC=BH+HC=2+8=10\left(cm\right)\)
△ABC vuông tại A có \(BC^2=AB^2+AC^2\\ \Rightarrow AB^2=BC^2-AC^2=10^2-6^2=64\\ \Rightarrow AB=8\left(cm\right)\)
cho tam giác abc vuông tại a. kẻ ah vuông góc với bc (h thuộc bc). tính ah, biết hb=2cm, hc=8cm
Bài1:Cho ΔMNP vuông tại N. Tính độ dài MN biết MP=√30cm,NP=√14 cm
Bài2:Cho ΔABC cân tại A. Biết AB=2cm. Tính BC
Bài3:Cho ΔABC vuông tại A,AH⊥BC tại H. Tính độ dài các cạnh của ΔABC biết AH=6cm,HB=4cm,HC=9cm
Bài4:Cho ΔABC vuông tại A,AH⊥BC tại H. Tính độ dài các cạnh của ΔABC biết AH=4cm,HB=2cm,HC=8cm
Bài5:Cho ΔABC vuông tại A,AH⊥BC tại H.Biết AB=4cm,HB=2cm,HC=8cm.Tính BC,AH,AC
Bài6:Cho ΔABC vuông tại A,AH⊥BC tại H.Biết AB=6cm,AC=8cm và \(\dfrac{HB}{HC}\)=\(\dfrac{9}{16}\)Tính HB,HC
Bài 3:
\(AB=\sqrt{AH^2+BH^2}=\sqrt{6^2+4^2}=2\sqrt{13}\left(cm\right)\)
BC=13cm
=>\(AC=3\sqrt{13}\left(cm\right)\)
Cho ΔABC , góc A =90 độ , AH⊥BC tại H , biết AH =2cm , HB=1cm . Tính HC , AC
Áp dụng hệ thức liên quan tới đường cao vào \(\Delta ABC\), ta có:
\(AH^2=BH.HC\Rightarrow HC=\dfrac{AH^2}{BH}=\dfrac{2^2}{1}=4\left(cm\right)\)
Mặt khác, áp dụng định lý Pytago vào \(\Delta BHA\), ta có:
\(AB^2=AH^2+BH^2\Rightarrow AB=\sqrt{AH^2+BH^2}=\sqrt{2^2+1}=\sqrt{5}\left(cm\right)\)
Áp dụng hệ thức giữa đường cao và các cạnh vào \(\Delta ABC\), ta có:
\(AB.AC=AH.BC\Rightarrow AC=\dfrac{AH.BC}{AB}=\dfrac{2.\left(1+4\right)}{\sqrt{5}}=2\sqrt{5}\left(cm\right)\)
Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:
\(AH^2=HB\cdot HC\)
nên \(HC=\dfrac{2^2}{1}=4\left(cm\right)\)
Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:
\(AC^2=HC\cdot BC\)
nên \(AC^2=20\)
hay \(AC=2\sqrt{5}\left(cm\right)\)
cho tam giác ABC vuông tại A , kẻ đường cao AH(H thuộc BC) biết HB=6cm, HC=8cm . Tính AH?
Lời giải:
Áp dụng hệ thức lượng trong tam giác vuông:
$AH^2=BH.CH=6.8=48$
$\Rightarrow AH=\sqrt{48}=4\sqrt{3}$ (cm)
Cho ΔABC cân có AB = AC = 5cm, BC = 8cm. Kẻ AH vuông góc BC (HBC) a. Chứng minh: HB = HC. b. Tính độ dài AH. c. Kẻ HD vuông góc với AB (D∈AB), kẻ HE vuông góc với AC (E∈AC). Chứng minh ΔHDE cân.
a: Xét ΔABC cân tại A có AH là đường cao
nên H là trung điểm của BC
hay HB=HC
b: Xét ΔADH vuông tại D và ΔAEH vuông tại E có
AH chung
\(\widehat{DAH}=\widehat{EAH}\)
Do đó: ΔADH=ΔAEH
Suy ra: HD=HE
hay ΔHDE cân tại H
ΔABC vuông ở A , đường cao AH
a) C/m ΔABC ∼ ΔHBA
b) Biết AB =8cm , AC=15cm . Tính BC
c) Tính HB , HC
a.Xét tam giác ABC và tam giác HBA có:
^B chung
^BAC = ^BHA = 90
=> tam giác ABC ~ tam giác HBA (g.g)
b. Áp dụng đl Pytago cho tam giác ABC vuông tại A:
BC2=AB2+AC2=82+152=289
=>BC=17cm
c.tam giác ABC ~ tam giác HBA
=> AB/HB=BC/BA
=>HB=AB2/BC=82/17=64/17 cm
=>HC=BC-HB=225/17
Bài 6. Cho ΔABC có AB = AC = 5cm, BC = 8cm. Kẻ AH vuông góc BC (H thuộc BC).
a) Chứng minh: HB = HC ̂
b) Tính độ dài đoạn AH?
c) Kẻ HD vuông góc AB (D thuộc AB), HE vuông góc AC (E thuộc AC). Chứng minh: ΔHDE cân.
a) Xét ΔABH vuông tại H và ΔACH vuông tại H có
AB=AC(gt)
AH chung
Do đó: ΔABH=ΔACH(cạnh huyền-cạnh góc vuông)
Suy ra: HB=HC(hai cạnh tương ứng)
b) Ta có: HB=HC(cmt)
mà HB+HC=BC(H nằm giữa B và C)
nên \(HB=HC=\dfrac{BC}{2}=\dfrac{8}{2}=4\left(cm\right)\)
Áp dụng định lí Pytago vào ΔABH vuông tại H, ta được:
\(AB^2=AH^2+HB^2\)
\(\Leftrightarrow AH^2=AB^2-BH^2=5^2-4^2=9\)
hay AH=3(cm)
Vậy: AH=3cm
c) Xét ΔABC có AB=AC(gt)
nên ΔABC cân tại A(Định nghĩa tam giác cân)
Ta có: ΔABC cân tại A(cmt)
nên \(\widehat{B}=\widehat{C}\)(hai góc ở đáy)
Xét ΔDBH vuông tại D và ΔECH vuông tại E có
HB=HC(cmt)
\(\widehat{B}=\widehat{C}\)(cmt)Do đó: ΔDBH=ΔECH(cạnh huyền-góc nhọn)
⇒HD=HE(Hai cạnh tương ứng)
Xét ΔHDE có HD=HE(cmt)
nên ΔHDE cân tại H(Định nghĩa tam giác cân)