cho đa thức f(x)=x2010 -2009x2009-2009x2008-2009x2007-...-2009x+1
tính f(2010)
Cho đa thức f(x)=x9-2009x8+2009x7-2009x6+2009x5-2009x4+2009x3-2009x2+2009x+2009
Giá trị của đa thức f(x) tại x=2008 là ...
Thay x=2008 vao cac thua so 2009 trong da thuc duoc :
x9 - (x+1)x8 +(x+1)x7 - (x+1)x6 + (x+1)x5 - (x+1)x4 + (x+1)x3 - (x+1)x2 + (x+1)x +(x+1)
=x9 - x9 - x8 + x8 + x7 - x7 - x6 + x6 + x5 - x5 - x4 + x4 + x3 - x3 - x2 + x2 + x + x +1
= 2x + 1= 4017
Giá trị của đa thứcf(x) tại x=2008 là 1
Cho các đa thức: f(x)= ax^2+bx+c(a,b,c là các hằng số) và g(x)= (2009x+2010)^2. Tính a-b+c nếu biết f(x)= g(x)
Cho các đa thức: f(x)=ax^2+bx+c(a,b,c là các hằng số) và g(x)= (2009x+2010)^2. Tính a-b+c nếu biết f(x)=g(x) với mọi giá trị của biến x
1) Cho đa thức: f(x)=x17-2000x16+2000x15-2000x14+...+2000x-1
Tính giá trị của đa thức tại x=1999
Ta có: x=1999
nên x+1=2020
Ta có: \(f\left(x\right)=x^{17}-2020\cdot x^{16}+2020\cdot x^{15}-2020\cdot x^{14}+...+2000x-1\)
\(=x^{17}-x^{16}\left(x+1\right)+x^{15}\left(x+1\right)-x^{14}\left(x+1\right)+...+x\left(x+1\right)-1\)
\(=x^{17}-x^{17}-x^{16}+x^{16}+x^{15}-x^{15}-x^{14}+...+x^2+x-1\)
\(=x-1\)
\(=1999-1=1998\)
f(x) = x^17 - 2000x^16 + 2000x^15 - 2000x^14 + ... + 2000x - 1
⇒ f(1999) = 1999^17 - 2000.1999^16 + 2000.1999^15 - 2000.1999^14 + ... + 2000.1999 - 1
⇒ 1999. f(1999) = 1999^18 - 1999.1999^17 + 2000.1999^16 - 2000.1999^15 + ... + 2000.1999^2 - 1999
⇒ 1999. f(1999) + f(1999) =(1999^18 - 1999.1999^17 + 2000.1999^16 - 2000.1999^15 + ... + 2000.1999^2 - 1999) + (1999^17 - 2000.1999^16 + 2000.1999^15 - 2000.1999^14 + ... + 2000.1999 - 1)
⇒ 2000. f(1999) = 19992−1
⇔ f(1999) =1999^2-1/2000(ghi dưới dạng phân số nha)
Cho đa thức
F(x)=x5 - 3x2 -x3 - x2 - 2x + 5
G(x)+x5 - x4 + x2 - 3x + x2 + 1
Tính H(x) = F(x) + G(x)
\(H\left(x\right)=F\left(x\right)+G\left(x\right)=\left(x^5-3x^2-x^3-x^2-2x+5\right)+\left(x^5-x^4+x^2-3x+x^2+1\right)\\ =x^5-3x^2-x^3-x^2-2x+5+x^5-x^4+x^2-3x+x^2+1\\ =\left(x^5+x^5\right)-x^4-x^3-\left(3x^2+x^2-x^2-x^2\right)-\left(2x+3x\right)+5\\ =2x^5-x^4-x^3-2x^2-5x+5\)
cho hai đa thức F(x) = x + 2x2 - 3x3 - 4x4+ 5x5 + 6x6 - 7x7 - 8x8+........+2009x2009+2010x2010 -2011x2011 - 2012 x2012 và g(x) = x - 1 tìm số dư khi chia f(x) cho g(x)
Vì số đư của phép chia F(x) cho nhị thức g(x)=x-1 chính bằng F(1) (theo định lý bezout) ,nên số dư của phép chia là
F(1)= 1+2-3-4+5+6-....-2012
=-2012
Vậy số dư của phép chia f(x) cho nhị thức g(x)=x-1 là -2012
Bài 1. Cho hai đa thức \(f\)(\(x\))= 5\(x\)4+4\(x\)2-2\(x\)+7 và \(g\)(\(x\))=4\(x\)4-2\(x\)3+3\(x\)2+4\(x\)-1
Tính \(f\)(\(x\)) + \(g\)(\(x\)) và \(f\)(\(x\)) - \(f\)(\(x\))
Bài 2. Thực hiện phép nhân.
a) (\(x\) + 3).(\(x\) - 1) b) (4\(x\) + 3).(\(x\)- 2)
c) (2\(x\) + 3).(\(x\) + 1) d) (5\(x\)-2).(\(x\)2- 3\(x\) + 1)
Bài 3. Tính giá trị biểu thức.
a) M=3\(x\)2-2\(x\).(\(x\)-5)+\(x\).(\(x\)-7) tại \(x\)=5
b) J=-3\(x\)2+4\(x\)-5.(\(x\)-2) tại \(x\)=-5
c) N=4\(x\).(2\(x\)-3)-5\(x \).(\(x\)-2) tại\(x\)=1
`1,`
`f(x)+g(x)=(5x^4+4x^2-2x+7)+(4x^4-2x^3+3x^2+4x-1)`
`= 5x^4+4x^2-2x+7+4x^4-2x^3+3x^2+4x-1`
`=(5x^4+4x^4)-2x^3+(4x^2+4x^2)+(-2x+4x)+(7-1)`
`= 9x^4-2x^3+8x^2+2x+6`
Đề phải là `f(x)-g(x)` chứ nhỉ :v?
`f(x)-g(x)=(5x^4+4x^2-2x+7)-(4x^4-2x^3+3x^2+4x-1)`
`= 5x^4+4x^2-2x+7-4x^4+2x^3-3x^2-4x+1`
`= (5x^4-4x^4)+2x^3+(-2x-4x)+(4x^2-3x^2)+(7+1)`
`= x^4+2x^3-6x+x^2+8`
`2,`
`a, (x+3)(x-1)`
`= x(x-1)+3(x-1)`
`= x*x+x*(-1)+3*x+3*(-1)`
`=x^2-x+3x-3`
`= x^2+2x-3`
`b, (4x+3)(x-2)`
`= 4x(x-2)+3(x-2)`
`= 4x*x+4x*(-2)+3*x+3*(-2)`
`= 4x^2-8x+3x-6`
`c, (2x+3)(x+1)`
`= 2x(x+1)+3(x+1)`
`= 2x*x+2x*1+3*x+3*1`
`= 2x^2+2x+3x+3`
`= 2x^2+5x+3`
`d, (5x-2)(x^2-3x+1)`
`= 5x(x^2-3x+1)+(-2)(x^2-3x+1)`
`= 5x*x^2+5x*(-3x)+5x*1+(-2)*x^2+(-2)*(-3x)+(-2)*1`
`= 5x^3-15x^2+5x-2x^2+6x-2`
`= 5x^3-17x^2+11x-2`
Cho đa thức f(x)=\(1+x+x^2+x^3+...+x^{2010}+x^{2011}\) tính f(x) và F(-1)
a,cho đa thức f(x)=ax2+bx+c. Xác định a, b, c biết f(x) có hai nghiệm là 2, -2 và a-c=10
b,cho đa thức P(x)= x17-2010.x16+2010.x15-2010.x14+...+2010.x-1
tính P(2009)