Tìm x biết:
\(\frac{x+9}{x+5}=\frac{2}{7}\)
Tìm x biết: \(\frac{x+1}{9}+\frac{x+4}{6}+\frac{x+5}{5}=\frac{x+2}{8}+\frac{x+3}{7}+\frac{x+6}{4}.\)
\(\frac{x+1}{9}+\frac{x+4}{6}+\frac{x+5}{5}=\frac{x+2}{8}+\frac{x+3}{7}+\frac{x+6}{4}\)
\(\Rightarrow\frac{x+1}{9}+\frac{x+4}{6}+\frac{x+5}{5}+3=\frac{x+2}{8}+\frac{x+3}{7}+\frac{x+6}{4}+3\)
\(\Rightarrow\left(\frac{x+1}{9}+1\right)+\left(\frac{x+4}{6}+1\right)+\left(\frac{x+5}{5}+1\right)=\left(\frac{x+2}{8}+1\right)\)\(+\left(\frac{x+3}{7}+1\right)+\left(\frac{x+6}{4}\right)\)
\(\Rightarrow\frac{x+10}{9}+\frac{x+10}{6}+\frac{x+10}{5}=\frac{x+10}{8}+\frac{x+10}{7}+\frac{x+10}{4}\)
\(\Rightarrow\left(x+10\right)\left(\frac{1}{9}+\frac{1}{6}+\frac{1}{5}\right)=\left(x+10\right)\left(\frac{1}{8}+\frac{1}{7}+\frac{1}{4}\right)\)
\(\Rightarrow\left(x+10\right)\frac{43}{90}=\left(x+10\right)\frac{29}{56}\)
\(\Rightarrow x+10=0\)
\(\Rightarrow x=-10\)
cộng 3 vào cả hai vế nên phương trình vẫn bằng nhau
Ta có \(\frac{x+1}{9}+1+\frac{x+4}{6}+1+\frac{x+5}{5}+1=\frac{x+2}{8}+1+\frac{x+3}{7}+1+\frac{x+6}{4}+1\)
\(\Leftrightarrow\frac{x+10}{9}+\frac{x+10}{6}+\frac{x+10}{5}=\frac{x+10}{8}+\frac{x+10}{7}+\frac{x+10}{4}\)
\(\Leftrightarrow\frac{x+10}{9}+\frac{x+10}{6}+\frac{x+10}{5}-\frac{x+10}{8}-\frac{x+10}{7}-\frac{x+10}{4}=0\)
\(\Leftrightarrow\left(x+10\right)\left(\frac{1}{9}+\frac{1}{6}+\frac{1}{5}-\frac{1}{8}-\frac{1}{7}-\frac{1}{6}\right)=0\)
mà \(\frac{1}{9}+\frac{1}{6}+\frac{1}{5}-\frac{1}{8}-\frac{1}{7}-\frac{1}{6}\ne0\)
\(\Rightarrow x+10=0\)
\(\Leftrightarrow x=-10\)
Tìm x, biết:
\(\begin{array}{l}a)x - \left( {\frac{5}{4} - \frac{7}{5}} \right) = \frac{9}{{20}}\\b)9 - x = \frac{8}{7} - \left( { - \frac{7}{8}} \right)\end{array}\)
\(\begin{array}{l}a)x - \left( {\dfrac{5}{4} - \dfrac{7}{5}} \right) = \dfrac{9}{{20}}\\x = \dfrac{9}{{20}} + \left( {\dfrac{5}{4} - \dfrac{7}{5}} \right)\\x = \dfrac{9}{{20}} + \dfrac{{25}}{{20}} - \dfrac{{28}}{{20}}\\x = \dfrac{{6}}{{20}}\\x = \dfrac{{ 3}}{{10}}\end{array}\)
Vậy \(x = \dfrac{{ 3}}{{10}}\)
\(\begin{array}{*{20}{l}}{b)9 - x = \dfrac{8}{7} - \left( { - \dfrac{7}{8}} \right)}\\\begin{array}{l}9 - x = \dfrac{8}{7} + \dfrac{7}{8}\\9 - x = \dfrac{{64}}{{56}} + \dfrac{{49}}{{56}}\\9 - x = \dfrac{{113}}{{56}}\end{array}\\{x = 9 - \dfrac{{113}}{{56}}}\\{x = \dfrac{{504}}{{56}} - \dfrac{{113}}{{56}}}\\{x = \dfrac{{391}}{{56}}}\end{array}\)
Vậy \(x = \dfrac{{391}}{{56}}\)
Tìm x biết
a) (8-5x).(x+2)+4.(x-2).(x+1)+2.(x-2).(x+2)=0
b)\(\left(-\frac{2}{5}+x\right):\frac{7}{9}+\left(-\frac{3}{5}+\frac{5}{6}\right):\frac{7}{9}=0\)
c)\(1+\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+...+\frac{2}{x\left(x+1\right)}=1\frac{2003}{2004}\)
Tìm x, biết:
a) \(\frac{x+5}{5}+\frac{x+5}{7}+\frac{x+5}{9}=\frac{x+5}{11}+\frac{x+5}{13}\)
b)\(\frac{x+2}{100}+\frac{x+3}{99}+\frac{x+4}{98}=\frac{x+5}{97}+\frac{x+6}{96}+\frac{x+7}{95}\)
c) (x+2) - (x+3) >0
d)\(\left(x-5\right)\left(x+\frac{7}{3}\right)\ge0\)
a) Ta có : \(\frac{x+5}{5}+\frac{x+5}{7}+\frac{x+5}{9}=\frac{x+5}{11}+\frac{x+5}{13}\)
\(\Rightarrow\frac{x+5}{5}+\frac{x+5}{7}+\frac{x+5}{9}-\left(\frac{x+5}{11}+\frac{x+5}{13}\right)=0\)
\(\Rightarrow\frac{x+5}{5}+\frac{x+5}{7}+\frac{x+5}{9}-\frac{x+5}{11}-\frac{x+5}{13}=0\)
\(\Rightarrow\left(x+5\right)\left(\frac{1}{5}+\frac{1}{7}+\frac{1}{9}-\frac{1}{11}-\frac{1}{13}\right)=0\)
Do \(\frac{1}{5}+\frac{1}{7}+\frac{1}{9}-\frac{1}{11}-\frac{1}{13}\ne0\)
\(\Rightarrow x+5=0\Rightarrow x=-5\)
Vậy x = -5
b) Ta có : \(\frac{x+2}{100}+\frac{x+3}{99}+\frac{x+4}{98}=\frac{x+5}{97}+\frac{x+6}{96}+\frac{x+7}{95}\)
\(\Rightarrow\frac{x+2}{100}+\frac{x+3}{99}+\frac{x+4}{98}+3=\frac{x+5}{97}+\frac{x+6}{96}+\frac{x+7}{95}+3\)
\(\Rightarrow\frac{x+2}{100}+1+\frac{x+3}{99}+1+\frac{x+4}{98}+1=\frac{x+5}{97}+1+\frac{x+6}{96}+1+\frac{x+7}{95}+1\)
\(\Rightarrow\frac{x+102}{100}+\frac{x+102}{99}+\frac{x+102}{98}=\frac{x+102}{97}+\frac{x+102}{96}+\frac{x+102}{95}\)
\(\Rightarrow\frac{x+102}{100}+\frac{x+102}{99}+\frac{x+102}{98}-\left(\frac{x+102}{97}+\frac{x+102}{96}+\frac{x+102}{95}\right)=0\)
\(\Rightarrow\frac{x+102}{100}+\frac{x+102}{99}+\frac{x+102}{98}-\frac{x+102}{97}-\frac{x+102}{96}-\frac{x+102}{95}\)
\(\Rightarrow\left(x+102\right)\left(\frac{1}{100}+\frac{1}{99}+\frac{1}{98}-\frac{1}{97}-\frac{1}{96}-\frac{1}{95}\right)=0\)
Do \(\frac{1}{100}+\frac{1}{99}+\frac{1}{98}-\frac{1}{97}-\frac{1}{96}-\frac{1}{95}\ne0\)
\(\Rightarrow x+102=0\Rightarrow x=-102\)
Vậy x = -102
c) Ta có : (x + 2) - (x + 3) = x + 2 - x - 3
= x - x + 2 - 3
= -1
mà (x + 2) - (x + 3) > 0 => không tồn tại x sao cho (x + 2) - (x + 3) > 0
d) Ta có : \(\left(x-5\right)\left(x+\frac{7}{3}\right)\ge0\)
\(\Rightarrow\orbr{\begin{cases}x\ge5\\x\ge\frac{-7}{3}\end{cases}}\)
\(\Rightarrow x\ge\frac{-7}{3}\)
Vậy \(x\ge\frac{-7}{3}\)
Tìm x, biết:
\(\begin{array}{l}a)x + 0,25 = \frac{1}{2}\\b)x - \left( { - \frac{5}{7}} \right) = \frac{9}{{14}}\end{array}\)
\(\begin{array}{l}a)x + 0,25 = \frac{1}{2}\\x = \frac{1}{2} - 0,25\\x = \frac{1}{2} - \frac{1}{4}\\x = \frac{2}{4} - \frac{1}{4}\\x = \frac{1}{4}\end{array}\)
Vậy \(x = \frac{1}{4}\)
\(\begin{array}{l}b)x - \left( { - \frac{5}{7}} \right) = \frac{9}{{14}}\\x = \frac{9}{{14}} + \left( { - \frac{5}{7}} \right)\\x = \frac{9}{{14}} + \left( { - \frac{{10}}{{14}}} \right)\\x = \frac{{ - 1}}{{14}}\end{array}\)
Vậy \(x = \frac{{ - 1}}{{14}}\)
1)
\(2\frac{1}{4}x-9\frac{1}{4}=-7\frac{1}{4}\)
\(2\frac{1}{4}x=\left(-7\frac{1}{4}\right)+9\frac{1}{4}\)
\(2\frac{1}{4}x=2\)
\(x=2:2\frac{1}{4}\)
\(x=\frac{8}{9}\)
Vậy \(x=\frac{8}{9}\)
tìm x, biết:
\(\left(\frac{5}{12}+\frac{-5}{7}+\frac{-22}{45}+\frac{7}{12}+\frac{-23}{45}\right).\)I x I -9 = - 2
\(\left(\frac{5}{12}-\frac{5}{7}-\frac{22}{45}+\frac{7}{12}-\frac{23}{45}\right).\left|x\right|-9=-2\)
\(\left(\frac{12}{12}-\frac{5}{7}-\frac{45}{45}\right).\left|x\right|=-2+9\)
\(\left(1-\frac{5}{7}-1\right).\left|x\right|=7\)
\(\frac{-5}{7}.\left|x\right|=7\)
\(\left|x\right|=7:\left(\frac{-5}{7}\right)\)
\(\left|x\right|=\frac{-49}{5}\)
\(\Rightarrow x\in\varnothing\) vì trị tuyệt đối của 1 số luôn dương
Tìm ba số x,y,z biết: \(\frac{x}{5} = \frac{y}{7} = \frac{z}{9}\) và x – y + z = \(\frac{7}{3}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
\(\begin{array}{l}\frac{x}{5} = \frac{y}{7} = \frac{z}{9} = \frac{{x - y + z}}{{5 - 7 + 9}} = \frac{{\frac{7}{3}}}{7} = \frac{7}{3}.\frac{1}{7} = \frac{1}{3}\\ \Rightarrow x = 5.\frac{1}{3} = \frac{5}{3};\\y = 7.\frac{1}{3} = \frac{7}{3};\\z = 9.\frac{1}{3} = \frac{9}{3} = 3.\end{array}\)
Vậy \(x = \frac{5}{3};y = \frac{7}{3};z = 3\)
Tìm x biết:
\(\frac{3}{5}-\frac{2}{7}< \frac{2}{3}x+\frac{3}{4}< \frac{1}{2}+\frac{7}{9}\)
tìm x biết:\(\left(x-\frac{1}{2}\right):\frac{1}{3}+\frac{5}{7}=9\frac{5}{7}\)
( x - 1/2) : 1/3 + 5/7 = 9 + 5/7
( x - 1/2 ) : 1/3 + 5/7 = 68/7
( x - 1/2 ) : 1/3 = 68/7 - 5/7
( x - 1/2 ) : 1/3 = 9
x - 1/2 = 9 * 1/3
x - 1/2 = 3
x = 3 + 1/2
x = 7/2
=> (x-1/2):1/3=63/7
=> x-1/2 = 3
=> x = 7/2