Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
N.T.M.D
Xem chi tiết
Phượng Hoàng Lửa
Xem chi tiết
Dương Helena
19 tháng 12 2015 lúc 20:50

Câu 2: Nếu a,b là số nguyên tố lớn hơn 3 => a,b lẻ

vì a ;b lẻ nên a;b chia 4 dư 1 hoặc 3(vì nếu dư 2 thì a ;b chẵn) đặt a = 4k +x ; b = 4m + y 
với x;y = {1;3} 
ta có: 
a^2 - b^2 = (a-b)(a+b) = (4k -4m + x-y)(4k +4m +x+y) = 
16(k-m)(k+m) + 4(k-m)(x+y) + 4(k+m)(x-y) + (x-y)(x+y) 
nếu x = 1 ; y = 3 và ngược lại thì x+y chia hết cho 4 và x-y chia hết cho 2 
=> 16(k-m)(k+m) + 4(k-m)(x+y) + 4(k+m)(x-y) + (x-y)(x+y) chia hết cho 8 
=> a^2 - b^2 chia hết cho 8 
nếu x = y thì 
x-y chia hết cho 8 và x+y chia hết cho 2 
=> 4(k-m)(x+y) chia hết cho 8 và 4(k+m)(x-y) + (x-y)(x+y) chia hết cho 8 
=> a^2 - b^2 chia hết cho 8 
vậy a^2 - b^2 chia hết cho 8 với mọi a,b lẻ (1) 
ta có: a;b chia 3 dư 1 hoặc 2 => a^2; b^2 chia 3 dư 1 
=> a^2 - b^2 chia hết cho 3 (2) 
từ (1) và (2) => a^2 -b^2 chia hết cho 24 
Tick nha TFBOYS

Sherry
Xem chi tiết
pham trung thanh
20 tháng 2 2018 lúc 15:35

Áp dụng Nguyên lí kẹp

\(\left(2p^2+p\right)^2< 4A< \left(2p^2+p+2\right)^2\)

Lê Nhật Phương
23 tháng 3 2018 lúc 22:32

đặt: p4 + p3 + p2 + p + 1 = n2

theo đề bài, ta có:

\(4n^2\ge4p^4+4p^3+4p^2+4p+4\ge4p^4+4p^3+p^2=\left(2p^2+p\right)^2\) (1)

\(4n^2\le4p^4+4p^3+4p^2+4p+4+5p^2=\left(2p^2+p+2\right)^2\)(2)

từ (1) và (2) => \(4n^2=\left(2p^2+p+1\right)^2\)

 \(\Rightarrow2n=2p^2+p+1\)

bình phương hai vế của đẳng thức này và so sánh với n2, ta có:

\(p^2-2p-3=0\)

\(\Leftrightarrow\left(p+1\right)\left(p-3\right)=0\)

p là số nguyên tố nên phương trình trên có nghiệm p = 3 thỏa mãn. 

=> p = 3.

Phạm Ý Linh
Xem chi tiết
Phạm Quang Lộc
30 tháng 1 2022 lúc 18:16

hello

Thái Trần Thảo Vy
Xem chi tiết
Nguyễn Thị Thương Hoài
27 tháng 10 2024 lúc 14:31

Bài 1: Gọi ước chung lớn nhất của n + 1 và 7n + 4 là d

Ta có: \(\left\{{}\begin{matrix}n+1⋮d\\7n+4⋮d\end{matrix}\right.\) ⇒ \(\left\{{}\begin{matrix}7n+7⋮d\\7n+4⋮d\end{matrix}\right.\) ⇒ 7n+ 7 - 7n - 4 ⋮ d

⇒ (7n - 7n) + (7 - 4) ⋮ d ⇒0 + 3 ⋮ d ⇒ 3 ⋮ d ⇒ d \(\in\) Ư(3) = {1; 3}

Nếu n = 3 thì n + 1 ⋮ 3 ⇒ n = 3k - 1 khi đó hai số sẽ không nguyên tố cùng nhau.

Vậy để hai số nguyên tố cùng nhau thì n \(\ne\) 3k - 1

Kết luận: n \(\ne\) 3k - 1 

 

 

 

Phạm xuân phát
Xem chi tiết
Nguyen Thi Kim Loan
14 tháng 2 2016 lúc 10:25

câu hỏi tương tự nha bạn

Thieu Gia Ho Hoang
14 tháng 2 2016 lúc 10:26

bai toan nay kho @gmail.com

Phạm xuân phát
14 tháng 2 2016 lúc 10:28

thì sao bạn

 

Phan Tùng Dương
Xem chi tiết
Yume To Hazakura
26 tháng 5 2018 lúc 8:03

a ) Đặt \(n^2+2006=a^2\left(a\in Z\right)\)

\(\Rightarrow2006=a^2-n^2=\left(a-n\right).\left(a+n\right)\)( 1 )

Mà ( a + n ) - ( a - n ) = 2n chia hết cho 2

=> a + n và a - n có cùng tính chẵn lẻ

TH1 : a + n và a - n cùng lẻ => ( a - n ) . ( a + n ) là số lẻ => trái với ( 1 )

TH2 : a + n và a -n cùng chẵn => ( a - n ) . ( a + n ) chia hết cho 4 => trái với 1 

Vậy ko có n thỏa man để \(n^2+2006\)là số chính phương

b ) Vì n là số nguyên tố lớn hơn 3 => n không chia hết cho 3

=> n = 3k + 1 hoặc n = 3k + 2 ( \(k\ne0\))

TH1 : n = 3k + 1 thì \(n^2+2006\)= \(\left(3k+1\right)^2\)+ 2006 \(=(9k^2+6k+2007)⋮3\)và lớn hơn 3

=> \(n^2+2006\)là hợp số

TH2 : n = 3k + 2 thì \(n^2+2006=\left(3k+2\right)^2=(9k^2+12k+2010)⋮3\)và lớn hơn 3

=> \(n^2+2006\)là hợp số

Vậy \(n^2+2006\)là hợp số

Trịnh kiều Huy lâm
Xem chi tiết
Nguyễn Việt Lâm
18 tháng 1 2022 lúc 20:43

Với \(p=3\) \(\Rightarrow2p^4-p^2+16=169=13^2\) thỏa mãn

Với \(p\ne3\Rightarrow p⋮̸3\Rightarrow p^2\) luôn chia 3 dư 1

\(\Rightarrow p^2=3k+1\)

\(\Rightarrow2p^4-p^2+16=2\left(3k+1\right)^2-\left(3k+1\right)+16=3\left(6k^2+3k+5\right)+2\) chia 3 dư 2

\(\Rightarrow2p^4-p^2+16\) ko thể là SCP với \(p\ne3\)

\(\Rightarrow p=3\) là giá trị duy nhất thỏa mãn 

Nghị Hoàng
Xem chi tiết