Với \(p=3\) \(\Rightarrow2p^4-p^2+16=169=13^2\) thỏa mãn
Với \(p\ne3\Rightarrow p⋮̸3\Rightarrow p^2\) luôn chia 3 dư 1
\(\Rightarrow p^2=3k+1\)
\(\Rightarrow2p^4-p^2+16=2\left(3k+1\right)^2-\left(3k+1\right)+16=3\left(6k^2+3k+5\right)+2\) chia 3 dư 2
\(\Rightarrow2p^4-p^2+16\) ko thể là SCP với \(p\ne3\)
\(\Rightarrow p=3\) là giá trị duy nhất thỏa mãn