Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Đậu Mạnh Dũng
Xem chi tiết
Nguyễn Như Quỳnh
Xem chi tiết
Nguyễn Kha
Xem chi tiết
ST
3 tháng 1 2018 lúc 21:20

Ta có: 

\(\hept{\begin{cases}\frac{a+b}{3}=\frac{b+c}{4}\Rightarrow4a+4b=3b+3c\Rightarrow4a+b-3c=0\left(1\right)\\\frac{b+c}{4}=\frac{c+a}{5}\Rightarrow5b+5c=4c+4a\Rightarrow4a-5b-c=0\Rightarrow4a=5b+c\left(2\right)\\\frac{c+a}{5}=\frac{a+b}{3}\Rightarrow3c+3a=5a+5b\Rightarrow2a+5b-3c=0\Rightarrow3c=2a+5b\left(3\right)\end{cases}}\)

Thay (2) vào (1) ta có: 3b=c

Thay (3) và (1) ta có: 2b=a

Vậy M=10a+b-7c+2017=10.2b+b-7.3b+2017=21b-21b+2017=0+2017=2017

Lê Trọng Chương
Xem chi tiết
I miss my love
Xem chi tiết
Akai Haruma
19 tháng 7 lúc 0:02

Đề có điều kiện chưa đúng. Bạn xem lại nhé.

Phan Tiến Hưng
Xem chi tiết
khanhhuyen6a5
Xem chi tiết
 Mashiro Shiina
24 tháng 12 2017 lúc 17:55

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\dfrac{a+b}{3}=\dfrac{b+c}{4}=\dfrac{c+a}{5}=\dfrac{a+b+b+c+c+a}{3+4+5}=\dfrac{a+b+b+c}{3+4}=\dfrac{b+c+c+a}{4+5}=\dfrac{a+b+c+a}{3+5}=\dfrac{a+b+c}{6}=\dfrac{a+2b+c}{7}=\dfrac{b+2c+a}{9}=\dfrac{b+2a+c}{8}\)

Tiếp tục áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\dfrac{a+b+c}{6}=\dfrac{a+2b+c}{7}=\dfrac{b+2c+a}{9}=\dfrac{b+2a+c}{8}=\dfrac{b+2a+c-a-b-c}{8-6}=\dfrac{a}{2}\) (1)

\(\dfrac{a+b+c}{6}=\dfrac{a+2b+c}{7}=\dfrac{b+2c+a}{9}=\dfrac{b+2a+c}{8}=\dfrac{a+2b+c-a-b-c}{7-6}=\dfrac{b}{1}\)(2)

\(\dfrac{a+b+c}{6}=\dfrac{a+2b+c}{7}=\dfrac{b+2c+a}{9}=\dfrac{b+2a+c}{8}=\dfrac{b+2c+a-a-b-c}{9-6}=\dfrac{c}{3}\) (3)

Từ (1) và (2) và (3) ta có: \(\dfrac{a}{2}=\dfrac{b}{1}=\dfrac{c}{3}\)

Đặt: \(\dfrac{a}{2}=\dfrac{b}{1}=\dfrac{c}{3}=t\Leftrightarrow\left\{{}\begin{matrix}a=2t\\b=t\\c=3t\end{matrix}\right.\)

Ta có: \(M=10a+b-7c+2017=20t+t-21t+2017=21t-21t+2017=0+2017=2017\)Vậy \(M=2017\)

Siêu cute
Xem chi tiết
Thanh Thảoo
Xem chi tiết
Darlingg🥝
1 tháng 1 2020 lúc 10:15

áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\frac{c+a}{5}=\frac{b+c}{4}=\frac{a+b}{3}=\frac{c+b-b-c+a+b}{5-4+3}=\frac{2a}{4}=\frac{a}{4}\left(1\right)\)

Từ (1) có: \(\frac{b+c}{4}=\frac{a+b}{3}\Leftrightarrow3b+3c=4a+4b\Leftrightarrow b=3c-4a\left(2\right)\)

Thế 2 vào biểu thức  M ta có: \(M=10a+3c-4a-7c+2017=6a-4c+2017\left(3\right)\)

Từ (1) có\(:\frac{c+a}{5}=\frac{a}{2}\Leftrightarrow2c+2a=5a\Leftrightarrow2c=3a\Leftrightarrow4c=6a\left(4\right)\)

Thế (4) vào (3) ta có: \(M=6a-6a+2017=2017\)

Vậy GT M = 2017

Khách vãng lai đã xóa
Kudo Shinichi
1 tháng 1 2020 lúc 10:29

+ Ta có : \(\frac{a+b}{3}=\frac{b+c}{4}\Rightarrow4a+4b=3b+3c\)

                                                 \(\Rightarrow4a+b=3c\)

             + \(\frac{a+b}{3}=\frac{c+a}{5}\Rightarrow5a+5b=3c+3a\)

                                                 \(\Rightarrow2a+5b=3c\)

            + \(\frac{b+c}{4}=\frac{c+a}{5}\Rightarrow5b+5c=4c+4a\)

                                                 \(\Rightarrow5b+c=4a\)

+ Ta có : \(\hept{\begin{cases}4a+b=3c\\5b+3a=3c\end{cases}\Rightarrow4a+b=5b+2a}\)

                                                         \(\Rightarrow2a=4b\)

                                                             \(\Rightarrow a=2b\)

+ Ta có : \(4a+b=3c\)

\(\Rightarrow4.2b+b=3c\)

\(9b=3c\)

\(\Rightarrow3b=c\)

+ Ta có : \(M=10a+b-7c+2017\)

                    \(=10.2b+b-7.3b+2017\)         

                       \(=20b+b-7.3b+2017\)

                         \(=21b-21b+2017\)

                              \(=0+2017=2017\)

Vậy M =2017 

Chúc bạn học tốt !!!

Khách vãng lai đã xóa