\(\dfrac{a+b}{3}=\dfrac{b+c}{4}=\dfrac{c+a}{5}\\ \Rightarrow\left\{{}\begin{matrix}4a+4b=3b+3c\\5a+5b=3c+3a\\5b+5c=4c+4a\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}4a+b-3c=0\\4a-5b-c=0\\2a+5b-3c=0\end{matrix}\right.\\ \Rightarrow\left\{{}\begin{matrix}4a+b-3c=0\\4a=5b+c\\3c=2a+5b\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}5b+c+b-3c=0\\4a+b-2a-5b=0\end{matrix}\right.\\ \Rightarrow\left\{{}\begin{matrix}6b=2c\\2a=4b\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}c=3b\\a=2b\end{matrix}\right.\\ \Rightarrow M=20b+b-21b+2021=2021\)