Tính B = \(13x^7-5y^3+2022\) tại x,y thỏa mãn: \(\left|x-1\right|+\left(y+2\right)^{2022}=0\)
Cho hàm số \(y=f\left(x\right)=x^{2023}+ax^{2019}+3\) thỏa mãn \(f\left(2022\right)=2021\). Tính f(-2022)
Cho 2022 số tự nhiên a(1), a(2), a(3), ..., a(2021), a(2022) khác 0 thỏa mãn:
\(\dfrac{1}{a\left(1\right)}\) + \(\dfrac{1}{a\left(2\right)}\) + ... + \(\dfrac{1}{a\left(2021\right)}\) + \(\dfrac{1}{a\left(2022\right)}\) = 1. Chứng minh rằng: tồn tại ít nhất một số trong 2022 số đã cho là số chẵn.
Cho x,y,z đoio một khác nhau thỏa mãn x+y+z=0
Tính \(P=\dfrac{2022\left(x-y\right)\left(y-z\right)\left(z-x\right)}{2xy^2+2yz^2+2zx^2+3xyz}\)
Em tham khảo:
cho 3 số x,y,z đôi một khác nhau và x+y+z=0 Tính\(P=\dfrac{2018\left(x-y\right)\left(y-z\right)\left(z-x\right)}{2xy^2+2... - Hoc24
Tìm tất cả các cặp số \(\left(x,y\right)\) thoả mãn: \(\left(2x-y+7\right)^{2022}+\left|x-3\right|^{2023}\le0\)
(2x-y+7)^2022>=0 với mọi x,y
|x-3|^2023>=0 với mọi x,y
Do đó: (2x-y+7)^2022+|x-3|^2023>=0 với mọi x,y
mà \(\left(2x-y+7\right)^{2022}+\left|x-3\right|^{2023}< =0\)
nên \(\left(2x-y+7\right)^{2022}+\left|x-3\right|^{2023}=0\)
=>2x-y+7=0 và x-3=0
=>x=3 và y=2x+7=2*3+7=13
Tìm x, y, zϵ R biết: \(\left(4x^2-4x+1\right)^{2022}+\left(y^2-\dfrac{4}{5}y+\dfrac{4}{25}\right)^{2022}+\left|x+y-z\right|=0\)
vì \(\left(4x^2-4x+1\right)^{2022}\ge0\left(\forall x\right)\),\(\left(y^2-\dfrac{4}{5}y+\dfrac{4}{25}\right)^{2022}\ge0\left(\forall y\right)\),\(\left|x+y+z\right|\ge0\)
mà \(\left(4x^2-4x+1\right)^{2022}+\left(y^2+\dfrac{4}{5}y+\dfrac{4}{25}\right)^{2022}+\left|x+y-z\right|=0\)
=>\(\left\{{}\begin{matrix}4x^2-4x+1=0\\y^2+\dfrac{4}{5}y+\dfrac{4}{25}=0\\x+y-z=0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}2x-1=0\\y+\dfrac{2}{5}=0\\x+y-z=0\end{matrix}\right.\)
<=>\(\left\{{}\begin{matrix}x=\dfrac{1}{2}\\y=\dfrac{-2}{5}\\\dfrac{1}{2}-\dfrac{2}{5}-z=0\end{matrix}\right.\)
<=>\(\left\{{}\begin{matrix}x=\dfrac{1}{2}\\y=\dfrac{-2}{5}\\z=\dfrac{1}{10}\end{matrix}\right.\)
KL: vậy \(\left\{{}\begin{matrix}x=\dfrac{1}{2}\\y=\dfrac{-2}{5}\\z=\dfrac{1}{10}\end{matrix}\right.\)
Tính \(2x^5-5y^3+2017\)tại y thỏa mãn \(\left|x-1\right|+\left(y+2\right)^{2016}=0\)
\(\left|x-1\right|+\left(y+2\right)^{2016}=0\)
Ta thấy: \(\hept{\begin{cases}\left|x-1\right|\ge0\\\left(y+2\right)^{2016}\ge0\end{cases}}\)
\(\Rightarrow\left|x-1\right|+\left(y+2\right)^{2016}\ge0\)
\(\Rightarrow\hept{\begin{cases}\left|x-1\right|=0\\\left(y+2\right)^{2016}=0\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x=1\\y=-2\end{cases}}\)
\(\Rightarrow A=2x^5-5y^3+2017=2\cdot1^5-5\cdot\left(-2\right)^3+2017=2059\)
TÍnh giá trị của biểu thức \(M=2021xy-y^2\)với x,y thỏa mãn \(\left(2021x-1\right)^{2020}+\left(3y+4\right)^{2022}\le0\)
Ta có: \(\hept{\begin{cases}\left(2021x-1\right)^{2020}\ge0\\\left(3y+4\right)^{2022}\ge0\end{cases}}\left(\forall x,y\right)\)
\(\Rightarrow\left(2021x-1\right)^{2020}+\left(3y+4\right)^{2022}\ge0\left(\forall x,y\right)\)
Mà theo đề bài ta có: \(\left(2021x-1\right)^{2020}+\left(3y+4\right)^{2022}\le0\)
Nên từ đó suy ra: \(\hept{\begin{cases}\left(2021x-1\right)^{2020}=0\\\left(3y+4\right)^{2022}=0\end{cases}}\Leftrightarrow\hept{\begin{cases}2021x-1=0\\3y+4=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=\frac{1}{2021}\\y=-\frac{4}{3}\end{cases}}\)
Khi đó \(M=2021\cdot\frac{1}{2021}\cdot\left(-\frac{4}{3}\right)-\left(-\frac{4}{3}\right)^2\)
\(=-\frac{4}{3}-\frac{16}{9}=-\frac{28}{9}\)
Cho đa thức \(f\left(x\right)\) có bậc 3 và hệ số cao nhất bằng 2 thỏa mãn :\(f\left(2020\right)=2021\) và \(f\left(2021\right)=2022\). Tính giá trị của \(f\left(2022\right)-f\left(2019\right)=?\).
P/s: Em xin phép nhờ quý thầy cô giáo và các bạn yêu toán gợi ý giúp đỡ em tham khảo với ạ.
Em cám ơn nhiều lắm ạ!
Tính C = \(13x^5-3y^3+2017\) tại x, y thỏa \(\left|x-1\right|+\left(y+2\right)^{2016}=0\)
\(\left|x-1\right|+\left(y+2\right)^{2016}=0\)
=>x-1=0 và y+2=0
=>x=1 và y=-2
\(C=13\cdot1^5-3\cdot\left(-2\right)^3+2017=13+2017-3\cdot\left(-8\right)=2030+24=2054\)