Tìm điều kiện của số nguyên n để phân số \(\frac{2n+5}{n+1}\)là phân số tối giản
Tìm điều kiện của n để phân số \(\frac{1-2n}{3n+2}\) là phân số tối giản
Chứng minh rằng với mọi số nguyên $n$
phân số dạng $\frac{n-2}{2.n+3}$ là phân số tối giản
cho phân số $B$=$\frac{n+1}{n+2}$ ($nez$)
$a,$tìm điều kiện để $B$ là phân số
$b,$tìm các số nguyên $n$ để $B$ có giá trị nguyên
Chứng minh rằng với mọi số nguyên $n$
phân số dạng $\frac{n-2}{2.n+3}$ là phân số tối giản
cho phân số $B$=$\frac{n+1}{n+2}$ ($nez$)
$a,$tìm điều kiện để $B$ là phân số
$b,$tìm các số nguyên $n$ để $B$ có giá trị nguyên
Tìm điều kiện của n để phân số \(\frac{7}{n+1}\) là phân số tối giản
Để phân số \(\frac{7}{n+1}\) là phân số tối giản thì cần 2 điều kiện
1.n+1\(\ne\)0=>n\(\ne\)-1
2.n+1\(⋮̸\)7=>n+1\(\ne\)7k(kEN)=>n\(\ne\)7k-1
Để \(\frac{7}{n+1}\) là phân số tối giản
Thì 7 chia hết cho n+1
\(\Rightarrow\)n+1\(\in\)Ư(7)
Vậy Ư(7)là:[1,-1,7,-7]
Do đó ta có bảng sau:
n+1 | -1 | -7 | 1 | 7 |
n | -2 | -8 | 0 | 6 |
Vậy n=-2;-8;0;6
cho biểu thức A= 5/ n-1 ; ( n thuộc Z )
a) Tìm điều kiện của n để A là phân số? Tìm tất cả giá trị nguyên của n để A là số nguyên?
b) chứng minh phân số n/ n+1 tối giản ; ( n thuộc N và n # 0 )
tụi bay là ai
1)tìm các số nguyên n để phân số sau rút gọn được
12 phần 7n+1
2) tìm điều kiện của số nguyên n để phân số sau là phân số tối giản
17 phần 3n-1
Mình làm phần 1. Phần 2 bạn dựa vào đó mà làm.
Để \(\frac{12}{7n+1}\) rút gọn được thì 7n + 1 phải chia hết cho 1 ước số lớn hơn 1 của 12
Ư(12) = { 2 ; 3 ; 4 ; 6 ; 12 }
Để 7n + 1 chia hết cho 2 thì n lẻ;
Để 7n+ 1chia hết cho 4 thì 7n chia 4 dư 3; mà 7 chia 4 dư 3 nên n chia 4 dư 1
Để 7n+1 chia hết cho 3 thì 7n chia 3 dư 2; mà 7 chia 3 dư 1 nên n chia 3 dư 2
Để 7n+1 chia hết cho 6 thì 7n chia 6 dư 5; mà 7 chia 6 dư 1 nên n chia 6 dư 5
Để 7n+1 chia hết cho 12; thì n phải chia hết cho 4 và 3; tức n chia 4 dư 1; chia 3 dư 2; hay chia 12 dư 5 .
Vậy ...
Cho phân số: A=3n-3/5-3n +5:5-3n/2;n€Z
1/ Tìm điều kiện để A nhận giá trị là số nguyên
2/ Tìm điều kiện để A là phân số tối giản
A = 2n + 3 với N € Z
n + 2
a. Tìm điều kiện của số nguyên n để A là phân số
b. Chứng tỏ rằng phân số A là phân số tối giản
a, A là phân số thì n+2 khác 0 =>n khác -2
vậy để A là phân số thì n khác -2
b, Để A là phân số tối giản thì 2n+3 chia hết n+2
\(\Rightarrow2n+3⋮n+3\)
\(\Rightarrow\left(2n+3-\left(n+2\right)\right)⋮n+2\)
\(\Rightarrow2n+3-2n-4⋮n+2\)
\(\Rightarrow-1⋮n+2\)
\(\Rightarrow n+2\inƯ\left(-1\right)=\left(1;-1\right)\)
ta có bảng:
n+2 | -1 | 1 |
n | -3 | -1 |
vậy A tối giản khi n=-3 hoặc n=-1
Gọi d là ƯCLN của 2n+3 và n+1
=>2n+3 chia hết cho d
=>2n+3-2(n+2)=-1 chia hết cho d=>d=1
=>A là ps thì n+2 khác 1 và -1=>n khác -1 và -3
Nếu n khác -1 và -3 thì A là ps tối giản
A=6n+4/2n-3
a, tìm điều kiện để A là phân số
b, tìm n để A nguyên
c, tìm n để A dương
d, tìm n để A âm
e, tìm n để A là phân số tối giản
Ta có: \(A=\frac{6n-9+13}{2n-3}=\frac{3\left(2n-3\right)+13}{2n-3}\)
Mà: 3 ( 2n - 3 ) chia hết cho 2n - 3
=> 13 chia hết cho 2n - 3 => 2n - 3 E Ư(13) = {1,-1,13,-13}
=> 2n E {4,2,16,-10}
Ta có bảng sau:
2n | 4 | 2 | 16 | -10 |
n | 2 | 1 | 8 | -5 |