x² + 5x + 6 = ?
(x^2+5x-6)(x^2+5x+6)
\(\lim\limits_{x\rightarrow1}\dfrac{-x^4-5x+6}{x^2+5x-6}\)
\(\lim\limits_{x\rightarrow1}\dfrac{-x^4-5x+6}{x^2+5x-6}=\lim\limits_{x\rightarrow1}\dfrac{-\left(x-1\right)\left(x^3+x^2+x+6\right)}{\left(x-1\right)\left(x+6\right)}\)
\(=\lim\limits_{x\rightarrow1}\dfrac{-\left(x^3+x^2+x+6\right)}{x+6}=\dfrac{-9}{7}\)
\(\frac{x^2-5x+6}{x^2+5x+6}\ge\frac{x+1}{x}\)
Giải bất phương trình đúng không nhỉ? Lần sau ra đề nhớ ghi cái đề -_-
~~~~~~~~~~~~~~~ Bài làm ~~~~~~~~~~~~~~~~~
Bất pt được biến đổi tương đương thành:
\(\frac{11x^2+5x+6}{x\left(x^2+5x+6\right)}\le0\)
\(\Rightarrow\) Tập \(n_0\) \(S=\left(-\infty;-3\right)\)\(∪\) \(\left(-2;0\right)\)
a) 5x(x - 1) - (x + 2).(5x - 7) = 6
b) 2.(3x - 1).(2x + 5) - 6.(2x - 1).(x + 2) = -6
a) 5x(x - 1) - (x + 2)(5x - 7) = 6
<=> 5x2 - 5x - 5x2 + 7x - 10 + 14 = 6
<=> -8x + 14 = 6
<=> -8x = 6 - 14
<=> -8x = -8
<=> x = 1
=> x = 1
b) 2(3x - 1)(2x + 5) - 6(2x - 1)(x + 2) = -6
<=> 12x2 + 30x - 4x - 10 - 12x2 - 24x + 6x + 12 = -6
<=> 8x + 2 = -6
<=> 8x = -6 - 2
<=> 8x = -8
<=> x = -1
=> x = -1
\(a,5x\left(x-1\right)-\left(x-2\right)\left(5x-7\right)=6.\)
\(\Rightarrow5x^2-5x-5x^2+17x-14=6\)
\(12x=20\Rightarrow x=\frac{5}{3}\)
\(b,2\left(3x-1\right)\left(2x+5\right)-6\left(2x-1\right)\left(x+2\right)=-6\)
\(\Rightarrow2\left(6x^2-13x-5\right)-6\left(2x^2+3x-2\right)=-6\)
\(\Rightarrow12x^2-26x-10-12x^2-18x+12=-6\)
\(\Rightarrow-44x=-8\Rightarrow x=\frac{2}{11}\)
1) (x+6)(3x-1)+x+6=0
2) (x+4)(5x+9)-x-4=0
3)(1-x)(5x+3)÷(3x-7)(x-1)
4)2x (2x-3)=(3-2x)(2-5x)
5)(2x-7)^2-6(2x-7)(x-3)=0
6)(x-2)(x+1)=x^2-4
7) x^2-5x+6=0
8)2x^3+6x^2=x^2+3x
9)(2x+5)^2=(x+2)^2
1) (x+6)(3x-1)+x+6=0
⇔(x+6)(3x-1)+(x+6)=0
⇔(x+6)(3x-1+1)=0
⇔3x(x+6)=0
2) (x+4)(5x+9)-x-4=0
⇔(x+4)(5x+9)-(x+4)=0
⇔(x+4)(5x+9-1)=0
⇔(x+4)(5x+8)=0
3)(1-x)(5x+3)÷(3x-7)(x-1)
=\(\frac{\left(1-x\right)\left(5x+3\right)}{\left(3x-7\right)\left(x-1\right)}=\frac{\left(1-x\right)\left(5x+3\right)}{\left(7-3x\right)\left(1-x\right)}=\frac{\left(5x+3\right)}{\left(7-3x\right)}\)
Cho đa thức: A = 5x10 + 5x9 +. . .+ 5x2 + 5x + 6
Tính giá trị A(x) tại x = 6
* Tại x = 6, ta có:
A(6) = 5 . 610 + 5 . 69 +. . .+ 5 . 62 + 5 . 6 + 6
= (6 - 1) . 610 + (6 - 1) . 69 +. . .+ (6 - 1) . 62 + (6 - 1) . 6 + 6
= 611 - 610 + 610 - 69 +. . .+ 63 - 62 + 62 - 6 + 6
= 611
Vậy tại x = 6 thì A(x) có giá trị là 611.
* Tại x = 6, ta có:
A(6) = 5 . 610 + 5 . 69 +. . .+ 5 . 62 + 5 . 6 + 6
= (6 - 1) . 610 + (6 - 1) . 69 +. . .+ (6 - 1) . 62 + (6 - 1) . 6 + 6
= 611 - 610 + 610 - 69 +. . .+ 63 - 62 + 62 - 6 + 6
= 611
Vậy tại x = 6 thì A(x) có giá trị là 611.
* Tại x = 6, ta có:
A(6) = 5 . 610 + 5 . 69 +. . .+ 5 . 62 + 5 . 6 + 6
= (6 - 1) . 610 + (6 - 1) . 69 +. . .+ (6 - 1) . 62 + (6 - 1) . 6 + 6
= 611 - 610 + 610 - 69 +. . .+ 63 - 62 + 62 - 6 + 6
= 611
Vậy tại x = 6 thì A(x) có giá trị là 611.
Tìm x,biết
1) 3x^2 - 4x = 0
2) (x^2 - 5x) + x - 5 = 0
3) x^2 - 5x + 6 = 0
4) 5x(x-3) - x+3 = 0
5) x^2 - 2x + 5 = 0
6) x^2 + x -6 = 0
Answer:
\(3x^2-4x=0\)
\(\Rightarrow x\left(3x-4\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x=0\\x=\frac{4}{3}\end{cases}}\)
\(\left(x^2-5x\right)+x-5=0\)
\(\Rightarrow x\left(x-5\right)+\left(x-5\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x-5=0\\x+1=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=5\\x=-1\end{cases}}\)
\(x^2-5x+6=0\)
\(\Rightarrow x^2-2x-3x+6=0\)
\(\Rightarrow\left(x^2-2x\right)-\left(3x-6\right)=0\)
\(\Rightarrow x\left(x-2\right)-3\left(x-2\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x-2=0\\x-3=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=2\\x=3\end{cases}}\)
\(5x\left(x-3\right)-x+3=0\)
\(\Rightarrow5x\left(x-3\right)-\left(x-3\right)=0\)
\(\Rightarrow\left(5x-1\right)\left(x-3\right)=0\)
\(\Rightarrow\orbr{\begin{cases}5x-1=0\\x-3=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=\frac{1}{5}\\x=3\end{cases}}\)
\(x^2-2x+5=0\)
\(\Rightarrow\left(x^2-2x+1\right)+4=0\)
\(\Rightarrow\left(x-1\right)^2=-4\) (Vô lý)
Vậy không có giá trị \(x\) thoả mãn
\(x^2+x-6=0\)
\(\Rightarrow x^2+3x-2x-6=0\)
\(\Rightarrow x.\left(x+3\right)-2\left(x+3\right)=0\)
\(\Rightarrow\left(x-2\right)\left(x+3\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x-2=0\\x+3=0\end{cases}\Rightarrow\orbr{\begin{cases}x=2\\x=-3\end{cases}}}\)
Tính:
a) (x^5 +12x^2 + 5x) : (3x)
b) (-5x^4 + 15x^3 - 18x) : (-5x)
c) (-x^6 +5x^4 - 2x^3) : 0,5x
a: \(=\dfrac{x^5}{3x}+\dfrac{12x^2}{3x}+\dfrac{5x}{3x}=\dfrac{1}{3}x^4+4x+\dfrac{5}{3}\)
b: \(=\dfrac{-5x^4}{-5x}-\dfrac{15x^3}{5x}+\dfrac{18x}{5x}=x^3-3x^2+\dfrac{18}{5}\)
c: \(=\dfrac{-x^6}{0.5x}+\dfrac{5x^4}{0.5x}-\dfrac{2x^3}{0.5x}=-2x^5+10x^3-4x^2\)
A) 2x³+6x²=x²+3x
B) (2x+5)²=(x+2)²
C) x²-5x+6=0
D) (2x-7)²-6(2x-7)(x-3)=0
E) (x-2)(x+1)=x²-4
G) 2x(2x-3)=(3-2x)(2-5x)
H) (1-x)(5x+3)=(3x-7)(x-1)
F) (x+6)(3x-1)+x+6=0
I) (4x-1)(x-3)=(x-3)(5x+2)
K) (x+4)(5x+9)-x-4=0
H) (x+3)(x-5)+(x+3)(3x-4)=0
c. x^2-5x +6 = 0
<=> x^2 - 5x = -6
<=> - 4x = -6
<=> x= -6/-4
Mình chỉ phân tích đa thức thành nhân tử thôi , phần còn lại bạn tự tính nha keo dài lắm
A) 2x2(x+3) - x(x+3) = 0 <=> x(x - 3)(2x-1)=0
B) (2x+5)2 - (x+2)2=0 <=> (x+3)(3x+7)=0
C) (x2-2x) - (3x-6)=0 <=> (x-2)(x-3)=0
D) (2x-7)(2x-7-6x+18)=0 <=> (2x-7)(-4x+11)=0
E) (x-2)(x+1) - (x-2)(x+2)=0 <=> (x-2)*(-1)=0 <=> x-2=0
G) (2x-3)(2x+2-5x)=0 <=> (2x-3)(-3x+2)=0
H) (1-x)(5x+3+3x-7)=0 <=> (1-x)(8x-4)=0
F) (x+6)*3x=0
I) (x-3)(4x-1-5x-2)=0 <=> (x-3)(-x-3)=0
K) (x+4)(5x+8)=0
H) (x+3)(4x-9)=0
B> <2X+5>2-<X+2>2=0
<2X+5-X-2><2X+X+2>=0
<X+3><3X+7>=0
X+3=0 HOẶC 3X+7=0
X=-3 HOẶC X=-7/3
C>X2-5X+6=0
X2-4X+4-X+2=0
<X-2>2-<X-2>=0
<X-2.><X-3>=0
X-2=0 HOẶC X-3=0
X=2 HOẶC X=3
D> <2X-7><2X-7-6<X-3>>=0
<2X-7><-4X+11>=0
2X-7=0 HOẶC -4X+11=0
X=7/2 HOẶC X=11/4
E><X-2><X+1>=X2-4
<X-2><X+1>-<X2-4>=0
<X-2><X+1>-<X-2><X+2>=0
-X+2=0
X=2
CÒN NHIÊU TỰ LÀM ĐI MỆT WA
Help me
A) 2x³+6x²=x²+3x
B) (2x+5)²=(x+2)²
C) x²-5x+6=0
D) (2x-7)²-6(2x-7)(x-3)=0
E) (x-2)(x+1)=x²-4
G) 2x(2x-3)=(3-2x)(2-5x)
H) (1-x)(5x+3)=(3x-7)(x-1)
F) (x+6)(3x-1)+x+6=0
I) (4x-1)(x-3)=(x-3)(5x+2)
K) (x+4)(5x+9)-x-4=0
H) (x+3)(x-5)+(x+3)(3x-4)=0