Tìm n thuộc N sao cho n2 + 7n+ 2 chia hết cho n + 4
Tìm n thuộc N sao cho n^2 + 7n+2 chia hết cho n+4
n2 + 7n + 2 chia hết cho n + 4
=> ( n2 + 4n) + ( 3n + 12) - 10 chia hết cho n + 4
=> n . ( n + 4) + 3 . ( n + 4) - 10 chia hết cho n + 4
=> ( n + 4) . ( n + 3) - 10 chia hết cho n + 4
Do ( n + 4) . ( n + 3) chia hết cho n + 4 nên 10 chia hết cho n + 4
Mà n thuộc N nên n + 4 >= 4
=> n + 4 thuộc { 5 ; 10}
=> n thuộc { 1 ; 6}
Vậy n thuộc { 1 ; 6}
Ta có: n2 + 7n + 2 chia hết cho n + 4
=> n2 + 4n + 3n + 2 chia hết cho n + 4
=> n(n + 4) + 3n + 2 chia hết cho n + 4
=> 3n + 2 chia hết cho n + 4
=> 3n + 12 - 10 chia hết cho n + 4
=> 10 chia hết cho n - 4
=> n - 4 thuộc Ư(10)={-1; 1; -2; 2; -5; 5; -10; 10}
=> n thuộc { 3; 5; 2; 6; -1; 9; -6; 14}
xin lỗi mk thiếu mak n thuộc N => n thuộc {1;6}
Tìm n thuộc N sao cho n2+7n+2 chia hết cho n+4
ta có: \(n^2+7n+2=n^2+4n+3n+12-10=n\left(n+4\right)+3\left(n+4\right)-10\)
\(\Rightarrow10\)chia hết cho n+4
\(\Rightarrow\)n+4\(\inƯ\left(10\right)\)
sau đó ban làm tiếp nhé!
Tìm n ∈ N
a, 3n + 2 chia hết cho n - 3
b, n2 + 7n + 9 chia hết cho n + 7
a: \(\Leftrightarrow n-3\in\left\{-1;1;11\right\}\)
hay \(n\in\left\{2;4;14\right\}\)
Lời giải:
a.
$3n+2\vdots n-3$
$3(n-3)+11\vdots n-3$
$\Rightarrow 11\vdots n-3$
$\Rightarrow n-3\in\left\{1; -1; 11; -11\right\}$
$\Rightarrow n\in\left\{4; 2; 14; -8\right\}$
Vì $n$ tự nhiên nên $n\in\left\{4;2;14\right\}$
b.
$n^2+7n+9\vdots n+7$
$n(n+7)+9\vdots n+7$
$\Rightarrow 9\vdots n+7$
$\Rightarrow n+7\in\left\{1; -1; 3; -3; 9; -9\right\}$
$\Rightarrow n\in\left\{-6; -8; -4; -10; 2; -16\right\}$
Vì $n$ tự nhiên nên $n=2$
Tìm n ∈ N
a, 3n + 2 chia hết cho n - 3
b, n2 + 7n + 9 chia hết cho n + 7
a: \(\Leftrightarrow n-3\in\left\{-1;1;11\right\}\)
hay \(n\in\left\{2;4;14\right\}\)
Tìm n ∈ N
n2 + 7n + 9 chia hết cho n + 7
\(\Rightarrow n\left(n+7\right)+9⋮n+7\\ \Rightarrow n+7\inƯ\left(9\right)=\left\{1;3;9\right\}\\ \Rightarrow n=2\left(n\in N\right)\)
\(\Leftrightarrow n+7=9\)
hay n=2
Tìm n thuộc N để n^2 +7n+2 chia hết cho n+4
n^2 +7n+2=n^2+4n+3n+12-10 chia hết cho n+4
hay n(n+4) +3(n+4) -10 chia hết cho n+4
hay (n+3)(n+4) -10 chia hết cho n+4
vì (n+3)(n+4) chia hét cho n+4 nên 10 chia hết cho n+4 mà n là số tự nhiên nên n lớn hơn hoặc =0 vậy n+4 lớn hơn hoặc=4
vậy n+4 chỉ có thể là 5 hôặc 10 từ đó n chỉ thể là 1 hoặc 6
tìm n thuộc Z sao cho :
a, 7n chia hết cho 3
b, -22 chia hết cho n
c, -16 chia hết cho (n-1)
d, (n +19) chia hết cho 18
a: 7n chia hết cho 3
mà 7 không chia hết cho 3
nên \(n⋮3\)
=>\(n=3k;k\in Z\)
b: \(-22⋮n\)
=>\(n\inƯ\left(-22\right)\)
=>\(n\in\left\{1;-1;2;-2;11;-11;22;-22\right\}\)
c: \(-16⋮n-1\)
=>\(n-1\inƯ\left(-16\right)\)
=>\(n-1\in\left\{1;-1;2;-2;4;-4;8;-8;16;-16\right\}\)
=>\(n\in\left\{2;0;3;-1;5;-3;9;-7;17;-15\right\}\)
d: \(n+19⋮18\)
=>\(n+1+18⋮18\)
=>\(n+1⋮18\)
=>\(n+1=18k\left(k\in Z\right)\)
=>\(n=18k-1\left(k\in Z\right)\)
Tìm n thuộc Z , sao cho:
a, 2n+7 chia hết cho n+1
b, 3n + 5 chia hết cho 7n -2
c, n^2 + 3n +1 chia hết cho n+2
a. \(2n+7⋮n+1\)
Mà \(n+1⋮n+1\)
\(\Leftrightarrow\hept{\begin{cases}2n+7⋮n+1\\2n+2⋮n+1\end{cases}}\)
\(\Leftrightarrow5⋮n+1\)
\(\Leftrightarrow n+1\inƯ\left(5\right)\)
Suy ra :
+) n + 1 = 1 => n = 0
+) n + 1 = 5 => n = 4
Vậy ........
Tìm n thuộc n sao cho:
a) n + 11 chia hết cho n - 1
b) 7n chia hết cho n - 1
a) 10 chia hết cho n-1
n-1 thuộc Ư của (10)={1,2,5,10}
n thuộc {2,3,7,11}
A)n+11\(⋮\)n-1
n-1\(⋮\)n-1
n+11-(n-1)\(⋮\)n-1
n+11-n-1\(⋮\)n-1
10\(⋮\)n-1
\(\Rightarrow\)n-1={1;2;5;10}
\(\Rightarrow\)n={2;3;6;11}
b)7.n\(⋮\)n-11
7n:\(⋮\)
n-1
7n-7n:n-1
0:n-1
Vậy n-1={0}
Vậy n={1}