Tìm tất cả các số nguyên dương n sao cho: 2n - 1 ⋮ 7
Tìm tất cả các số nguyên dương k sao cho tồn tại số nguyên dương n thỏa mãn 2n+11 chia hết cho 2k-1.
Để tìm tất cả các số nguyên dương k thỏa mãn điều kiện đã cho, ta sẽ giải phương trình theo n.
2n + 11 chia hết cho 2k - 1 có nghĩa là tồn tại một số nguyên dương m sao cho:
2n + 11 = (2k - 1)m
Chuyển biểu thức trên về dạng phương trình tuyến tính:
2n - (2k - 1)m = -11
Ta nhận thấy rằng nếu ta chọn một số nguyên dương nào đó, ta có thể tìm được một số nguyên dương k tương ứng để phương trình trên có nghiệm. Do đó, ta chỉ cần tìm tất cả các số nguyên dương n thỏa mãn phương trình trên.
Để giải phương trình này, ta có thể sử dụng thuật toán Euclid mở rộng (Extended Euclidean Algorithm). Tuy nhiên, trong trường hợp này, ta có thể tìm được một số giá trị n và k thỏa mãn phương trình bằng cách thử từng giá trị của n và tính giá trị tương ứng của k.
Dưới đây là một số cặp giá trị n và k thỏa mãn phương trình đã cho:
(n, k) = (3, 2), (7, 3), (11, 4), (15, 5), (19, 6), …
Từ đó, ta có thể thấy rằng có vô số giá trị n và k thỏa mãn phương trình đã cho.
Tìm tất cả các số nguyên dương n sao cho 2n + 3n+ 4n là 1 số chính phương
Tìm tất cả n là các số nguyên dương sao cho 60+2n-n^2 là số chính phương
ta có :
Tìm tất cả các số nguyên dương n sao cho tất cả các số n+1, n+5, n+7, n+13, n+17, n+25, n+37 đều là các số nguyên tố.
n không thể là số lẻ vì lúc đó ít nhất 6 số chẵn > 2 nên không thể là số nguyên tố. Dễ thấy với n = 2 số n + 7 = 9 là hợp số (tất nhiên không chỉ số đó nhưng ta không cần gì hơn), với n = 4 số n + 5 = 9 là hợp số. Với n = 6 dễ thấy cả 7 số đều là số nguyên tố.
Dễ thấy là trong 7 số đã cho có 1 số chia hết cho 7. Thật thế 7 số đã cho khi chia cho 7 có cùng số dư với 7 số n+1, n+5, n+7, n+6, n+3, n+4, n+2 mà trong 7 số tự nhiên liên tiếp có 1 số chia hết cho 7.
=> với n ≥ 8 trong 7 số đã cho có 1 số chia hết cho 7 và > 7 nên là hợp số.
=> số duy nhất thỏa mãn là n = 6
Tìm tất cả các số nguyên \(n\) sao cho \(n^4+2n^3+2n^2+n+7\) là số chính phương.
\(A=n^4+2n^3+2n^2+n+7\)
\(\Rightarrow A=n^4+2n^3+n^2+n^2+n+7\)
\(\Rightarrow A=\left(n^2+n\right)^2+n^2+n+\dfrac{1}{4}+\dfrac{27}{4}\)
\(\Rightarrow A=\left(n^2+n\right)^2+\left(n+\dfrac{1}{2}\right)^2+\dfrac{27}{4}\)
\(\Rightarrow A>\left(n^2+n\right)^2\left(1\right)\)
Ta lại có :
\(\left(n^2+n+1\right)^2-A\)
\(=n^4+n^2+1+2n^3+2n^2+2n-n^4-2n^3-2n^2-n-7\)
\(=n^2+n-6\)
Để \(n^2+n-6>0\)
\(\Leftrightarrow\left(n+3\right)\left(n-2\right)>0\)
\(\Leftrightarrow\left[{}\begin{matrix}n< -3\\n>2\end{matrix}\right.\) \(\Rightarrow\left(n^2+n+1\right)^2>A\left(2\right)\)
\(\left(1\right),\left(2\right)\Rightarrow\left(n^2+n\right)^2< A< \left(n^2+n+1\right)^2\)
Nên A không phải là số chính phương
Xét \(-3\le n\le2\)
Để A là số chính phương
\(\Rightarrow n\in\left\{-3;-2;-1;0;1;2\right\}\)
Thay các giá trị n vào A ta thấy với \(n=-3;n=2\) ta đều được \(A=49\) là số chính phương
\(\Rightarrow\left[{}\begin{matrix}n=-3\\n=2\end{matrix}\right.\) thỏa mãn đề bài
Tìm tất cả các số nguyên dương n sao cho 2^n -1 chia hết cho 7
ta có: xy+3y-y=6
=> xy+2y=6
=> y(x+2)=6
vì x,y nguyên nên y,(x+2) là các ước của 6
ta có bảng sau
x+2 | 1 | -1 | 2 | -2 | 3 | -3 | 6 | -6 |
y | 6 | -6 | 3 | -3 | 2 | -2 | 1 | -1 |
x | -1 | -3 | 0 | -4 | 1 | -5 | 4 | -8 |
xy+3y-y=6
xy+y(3-1)=6
xy+y2=6
y(x+2)=6
lập bảng
x+2 | 2 | 3 | -2 | -3 |
y | 3 | 2 | -3 | -2 |
x | 0 | 1 | -4 | -5 |
vậy với các cặp x,y thỏa mãn là:
nếu y=3 thì x=0;nếu y=2 thì x=1;nếu y=-2 thì x=-4;nếu y=-3 thì x=-5
Bài 17: Tìm tất cả các số nguyên n sao cho các phân số sau có giá trị là số nguyên.
a) \(\dfrac{12}{3n-1}\) . b) \(\dfrac{2n+3}{7}\) .
c) \(\dfrac{2n+5}{n-3}\) .
Mình mới học lớp 5 thôi nha
Mong bạn thông cảm
Tìm tất cả các số nguyên dương n sao cho số n(n+1)(n+7)(n+8) là 1 số chính phương
Tìm tất cả các số nguyên dương n sao cho: 2n -1 chia hết cho 7
Lời giải:
Nếu $n\vdots 3$. Đặt $n=3k$ với $k$ tự nhiên.
Khi đó: $2^n-1=2^{3k}-1=8^k-1\equiv 1^k-1\equiv 0\pmod 7$ (tm)
Nếu $n$ chia 3 dư 1. Đặt $n=3k+1$ với $k$ tự nhiên.
Khi đó: $2^n-1=2^{3k+1}-1=8^k.2-1\equiv 1^k.2-1\equiv 1\pmod 7$ (không tm)
Nếu $n$ chia 3 dư 2. Đặt $n=3k+2$ với $k$ tự nhiên.
Khi đó: $2^n-1=2^{3k+2}-1=8^k.4-1\equiv 1^k.4-1\equiv 3\pmod 7$ (không tm)
Vậy số tự nhiên $n$ thỏa mãn $2^n-1\vdots 7$ là những số chia hết cho 3.
Lời giải:
Nếu $n\vdots 3$. Đặt $n=3k$ với $k$ tự nhiên.
Khi đó: $2^n-1=2^{3k}-1=8^k-1\equiv 1^k-1\equiv 0\pmod 7$ (tm)
Nếu $n$ chia 3 dư 1. Đặt $n=3k+1$ với $k$ tự nhiên.
Khi đó: $2^n-1=2^{3k+1}-1=8^k.2-1\equiv 1^k.2-1\equiv 1\pmod 7$ (không tm)
Nếu $n$ chia 3 dư 2. Đặt $n=3k+2$ với $k$ tự nhiên.
Khi đó: $2^n-1=2^{3k+2}-1=8^k.4-1\equiv 1^k.4-1\equiv 3\pmod 7$ (không tm)
Vậy số tự nhiên $n$ thỏa mãn $2^n-1\vdots 7$ là những số chia hết cho 3.