Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
phùng hạ ân
Xem chi tiết
Tâm Vũ Minh
Xem chi tiết
Đào Văn Thành
1 tháng 12 2021 lúc 21:23

fnf tha

Khách vãng lai đã xóa
Pika Pika
Xem chi tiết
Nguyễn Hà
Xem chi tiết
đặng tuấn phong
Xem chi tiết
ILoveMath
18 tháng 11 2021 lúc 21:28

\(x^2=y.z\Rightarrow x^3=x.y.z\\ y^2=x.z\Rightarrow y^3=x.y.z\\ z^2=x.y\Rightarrow z^3=x.y.z\\ \Rightarrow x^3=y^3=z^3\\ \Rightarrow x=y=z\)

Nguyễn Thị My
Xem chi tiết
Nguyễn Thị My
Xem chi tiết
Nguyễn Thị My
Xem chi tiết
Nguyễn Bá Hào
Xem chi tiết
Trí Tiên亗
6 tháng 3 2020 lúc 21:23

Ta có : \(x^2+y^2\ge2xy\)

\(\Leftrightarrow2\left(x^2+y^2\right)\ge\left(x+y\right)^2\)

\(\Leftrightarrow x^2+y^2\ge\frac{\left(x+y\right)^2}{2}\)

Áp dụng vào bài toán có :

\(P\le\frac{x+y}{\frac{\left(x+y\right)^2}{2}}+\frac{y+z}{\frac{\left(y+z\right)^2}{2}}+\frac{z+x}{\frac{\left(z+x\right)^2}{2}}\) \(=\frac{2}{x+y}+\frac{2}{y+z}+\frac{2}{z+x}=\frac{1}{2}\left(\frac{4}{x+y}+\frac{4}{y+z}+\frac{4}{z+x}\right)\)

Áp dụng BĐT Svacxo ta có :

\(\frac{4}{x+y}\le\frac{1}{x}+\frac{1}{y}\)\(\frac{4}{y+z}\le\frac{1}{y}+\frac{1}{z}\)\(\frac{4}{z+x}\le\frac{1}{z}+\frac{1}{x}\)

Do đó : \(P\le\frac{1}{2}\left[2.\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\right]=2016\)

Dấu "=" xảy ra \(\Leftrightarrow x=y=z=\frac{1}{672}\)

P/s : Dấu "=" không chắc lắm :))

Khách vãng lai đã xóa
Nguyễn Bá Hào
7 tháng 3 2020 lúc 9:42

thanks bạn mình hiểu sương sương rồi:))

Khách vãng lai đã xóa