\(\frac{12}{38}\)x\(\frac{n+2}{9}x3=1869\)tìm n khi biết những điều trên
Tìm x biết
a) x+2x+3x+4x+...+100x=-213
b)\(\frac{1}{2}x-\frac{1}{3}=\frac{1}{4}x-\frac{1}{6}\)
c)3(x-2)+2(x-1)=10
d)\(\frac{x+1}{3}=\frac{x-2}{4}\)
e)\(\frac{x-6}{7}+\frac{x-7}{8}+\frac{x-8}{9}=\frac{x-9}{10}+\frac{x-10}{11}+\frac{x-11}{12}\)
f)\(\frac{x+32}{11}+\frac{x+23}{12}=\frac{x+38}{13}+\frac{x+27}{14}\)
#)Giải :
a) x + 2x + 3x + ... + 100x = - 213
=> 100x + ( 2 + 3 + 4 + ... + 100 ) = - 213
=> 100x + 5049 = - 213
<=> 100x = - 5262
<=> x = - 52,62
#)Giải :
b) \(\frac{1}{2}x-\frac{1}{3}=\frac{1}{4}x-\frac{1}{6}\)
\(\Rightarrow\frac{1}{2}x+\frac{1}{4}x=\frac{1}{3}+\frac{1}{6}\)
\(\Rightarrow\frac{1}{2}x+\frac{1}{4}x=\frac{1}{2}\)
\(\Rightarrow\left(\frac{1}{2}+\frac{1}{4}\right)x=\frac{1}{2}\)
\(\Rightarrow\frac{3}{4}x=\frac{1}{2}\)
\(\Leftrightarrow x=\frac{2}{3}\)
a) x + 2x + 3x + ... +100x = -213
=> x . (1 + 2 + 3 +... + 100) = - 213
=> x . 5050 = -213
=> x = - 213 : 5050
=> x = -213/5050
b) \(\frac{1}{2}x-\frac{1}{3}=\frac{1}{4}x-\frac{1}{6}\)
=> \(\frac{1}{2}x-\frac{1}{4}x=\frac{1}{3}-\frac{1}{6}\)
=> \(x.\left(\frac{1}{2}-\frac{1}{4}\right)=\frac{1}{6}\)
=> \(x.\frac{1}{4}=\frac{1}{6}\)
=> \(x=\frac{1}{6}:\frac{1}{4}\)
=> \(x=\frac{2}{3}\)
c) 3(x-2) + 2(x-1) = 10
=> 3x - 6 + 2x - 2 = 10
=> 3x + 2x - 6 - 2 = 10
=> 5x - 8 = 10
=> 5x = 10 + 8
=> 5x = 18
=> x = 18:5
=> x = 3,6
d) \(\frac{x+1}{3}=\frac{x-2}{4}\)
=> \(4\left(x+1\right)=3\left(x-2\right)\)
=>\(4x+4=3x-6\)
=> \(4x-3x=-4-6\)
=> \(x=-10\)
Tìm số tự nhiên n nhỏ nhất để các phân số sau là những phân số tối giản:
\(\frac{7}{n+9};\frac{8}{n+10};\frac{9}{n+11};\frac{10}{n+12};...;\frac{30}{n+21};\frac{31}{n+33}\)
Tìm số tự nhiên n nhỏ nhất để các phân số sau là những phân số tối giản:
\(\frac{7}{n+9};\frac{8}{n+10};\frac{9}{n+11};\frac{10}{n+12};...;\frac{30}{n+32};\frac{31}{n+33}\)
\(A=\left(\frac{x}{x+3}+\frac{2x}{x-3}-\frac{3x^2+12}{x^2-9}\right):\frac{3}{x-3}\)
a, tìm điều kiện xác ddingj A, rút gọn A
b, Tính A khi x=-4
c, tìm x thuộc z để A thuộc z
a, ĐKXĐ: \(x\ne\pm3\)
\(A=\frac{x\left(x-3\right)+2x\left(x+3\right)-3x^2-12}{\left(x-3\right)\left(x+3\right)}.\frac{x-3}{3}\)
\(=\frac{3x-12}{\left(x-3\right)\left(x+3\right)}.\frac{x-3}{3}=\frac{3x-12}{3x+9}\)
b, \(x=-4\Rightarrow A=\frac{3.\left(-4\right)-12}{3.\left(-4\right)+9}=8\)
c, \(A\in Z\Rightarrow3x-12⋮\left(3x+9\right)\Rightarrow3x+9-21⋮\left(3x+9\right)\Rightarrow21⋮\left(3x+9\right)\)
\(\Rightarrow3x+9\inƯ\left(21\right)=\left\{\pm1;\pm3;\pm7;\pm21\right\}\)
Mà \(3x+9⋮3\Rightarrow3x+9\in\left\{-21;-3;3;21\right\}\Rightarrow x\in\left\{-10;-4;-2;4\right\}\) (thỏa mãn điều kiện)
a, ĐỂ A xác định :
\(\Rightarrow\hept{\begin{cases}x+3\ne0\\x-3\ne0\\x^2-9\ne0\end{cases}}\Rightarrow x\ne\pm3.\)
\(A=\left(\frac{x}{x+3}+\frac{2x}{x-3}-\frac{3x^2+12}{\left(x+3\right)\left(x-3\right)}\right):\frac{3}{x-3}\)
\(A=\frac{x\left(x-3\right)}{\left(x-3\right)\left(x+3\right)}+\frac{2x\left(x+3\right)}{\left(x-3\right)\left(x+3\right)}-\frac{3x^2+12}{\left(x-3\right)\left(x+3\right)}:\frac{3}{x-3}\)
\(A=\frac{x^2-3x+2x^2+6x-3x^2+12}{\left(x-3\right)\left(x+3\right)}.\frac{x-3}{3}\)
\(A=\frac{3x+12}{\left(x-3\right)\left(x+3\right)}.\frac{x-3}{3}\)
\(A=\frac{x-4}{x+3}\)
b
a) \(A=\left(\frac{x}{x+3}+\frac{2x}{x-3}-\frac{3x^2+12}{x^2-9}\right):\frac{3}{x-3}\)
\(A=\left[\frac{x}{x+3}+\frac{2x}{x-3}-\frac{3x^2+12}{\left(x-3\right)\left(x+3\right)}\right]:\frac{3}{x-3}\)
A xác định \(\Leftrightarrow\hept{\begin{cases}x+3\ne0\\x-3\ne0\end{cases}\Leftrightarrow\hept{\begin{cases}x\ne-3\\x\ne3\end{cases}}}\)
b) \(A=\left[\frac{x}{x+3}+\frac{2x}{x-3}-\frac{3x^2+12}{\left(x-3\right)\left(x+3\right)}\right]:\frac{3}{x-3}\)
\(A=\left[\frac{x\left(x-3\right)}{\left(x+3\right)\left(x-3\right)}+\frac{2x\left(x+3\right)}{\left(x-3\right)\left(x+3\right)}-\frac{3x^2+12}{\left(x-3\right)\left(x+3\right)}\right]:\frac{3}{x-3}\)
\(A=\left[\frac{x^2-3x+2x^2+6x-3x^2-12}{\left(x+3\right)\left(x-3\right)}+\right]:\frac{3}{x-3}\)
\(A=\left[\frac{3x-12}{\left(x+3\right)\left(x-3\right)}\right].\frac{x-3}{3}\)
\(A=\left[\frac{3\left(x-4\right)}{\left(x+3\right)\left(x-3\right)}\right].\frac{x-3}{3}\)
\(A=\frac{x-4}{x+3}\)
Với \(x=-4\)
\(\Rightarrow A=\frac{-4-4}{-4+3}=-\frac{8}{-1}=8\)
Vậy \(A=8\)tại \(x=-4\)
c) \(A=\frac{x-4}{x+3}=\frac{x+3-7}{x+3}=1-\frac{7}{x+3}\)
Có \(1\in Z\)
Để \(A\in Z\Rightarrow\frac{7}{x+3}\in Z\)
Có: \(x\in Z\Rightarrow x+3\in Z\Rightarrow\frac{7}{x+3}\in Z\Leftrightarrow\left(x+3\right)\in\text{Ư}\left(7\right)=\left\{\pm1;\pm7\right\}\)
b tự lập bảng nhé~
Bài 1:Tìm 2 số tự nhiên a và b biết tổng UCLN và BCNN của chúng là 15
Bài 2;Tìm x biết: 1) \(-\frac{2}{3}\left(x-\frac{1}{4}\right)=\frac{1}{3}\left(2x-1\right)\)
2)\(\frac{1}{5}.2^x+\frac{1}{3}.2^{x+1}=\frac{1}{5}.2^7+\frac{1}{3}.2^8\)
Bài 3:Tìm các số nguyên n sao cho: \(^{n^2+5n+9}\)là bội của n+3
Bài 4:Chứng minh rằng bình phương của một số nguyên tố khác 2 và 3 khi chia cho 12 đều dư 1
Bài 5:Tìm x nguyên thỏa mãn:|x+1|+|x-2|+|x+7|=5x-10
Bài 6;Tìm 3 số có tổng bằng 210, biết rằng 6/7 ST1 bằng 9/11 ST2 và 9/11 ST2 bằng 2/3 ST3
Bài 7: Tìm 2 số biết tỉ số của chứng bằng 5:8 và tích của chứng bằng 360
Mình đang cần gấp.Các bạn giúp nha
Mình chỉ làm được bài một thôi:
BÀI 1: Giải
Gọi ƯCLN(a;b)=d (d thuộc N*)
=> a chia hết cho d ; b chia hết cho d
=> a=dx ; b=dy (x;y thuộc N , ƯCLN(x,y)=1)
Ta có : BCNN(a;b) . ƯCLN(a;b)=a.b
=> BCNN(a;b) . d=dx.dy
=> BCNN(a;b)=\(\frac{dx.dy}{d}\)
=> BCNN(a;b)=dxy
mà BCNN(a;b) + ƯCLN(a;b)=15
=> dxy + d=15
=> d(xy+1)=15=1.15=15.1=3.5=5.3(vì x; y ; d là số tự nhiên)
TH 1: d=1;xy+1=15
=> xy=14 mà ƯCLN(a;b)=1
Ta có bảng sau:
x | 1 | 14 | 2 | 7 |
y | 14 | 1 | 7 | 2 |
a | 1 | 14 | 2 | 7 |
b | 14 | 1 | 7 | 2 |
TH2: d=15; xy+1=1
=> xy=0(vô lý vì ƯCLN(x;y)=1)
TH3: d=3;xy+1=5
=>xy=4
mà ƯCLN(x;y)=1
TA có bảng sau:
x | 1 | 4 |
y | 4 | 1 |
a | 3 | 12 |
b | 12 | 3 |
TH4:d=5;xy+1=3
=> xy = 2
Ta có bảng sau:
x | 1 | 2 |
y | 2 | 1 |
a | 5 | 10 |
b | 10 | 5 |
.Vậy (a;b) thuộc {(1;14);(14;1);(2;7);(7;2);(3;12);(12;3);(5;10);(10;5)}
tìm x,y \(\in\)N ,biết :
a, \(\frac{3}{4}< \frac{x}{30}< \frac{y}{60}< \frac{4}{5}\)
b, \(\frac{-1}{2}< \frac{x}{24}< \frac{y}{12}< \frac{-3}{8}\)
c, \(\frac{-7}{8}< \frac{x}{38}< \frac{y}{72}< \frac{-5}{6}\)
Số tự nhiên n nào thỏa mãn điều kiện sau ko?
\(\frac{7}{2}:\frac{3}{12}
Ta có:
7/2:3/12
=7/2x4
=14
Vậy có n=14 là thỏa mãn điều kiện
Chúc em học tốt^^
Anh nhanh nhất nè^^
Bài 1 : Tìm x biết :
\(\frac{x}{3}=-\frac{12}{9}\)
\(\frac{4}{5}x-\frac{8}{5}=-\frac{1}{2}\)
\(\frac{1}{5}.\left|x\right|-1\frac{2}{5}=\frac{2}{5}\)
Bài 2 : Tìm tất cả các số nguyên để \(\frac{n+1}{n-2}\) là số nguyên.
Ai nhanh mk tick
1.Ta có: \(\frac{x}{3}=-\frac{12}{9}\)
=> \(\frac{3x}{9}=-\frac{12}{9}\)
=> 3x = -12
=> x = -12 : 3
=> x = -4
\(\frac{4}{5}x-\frac{8}{5}=-\frac{1}{2}\)
=> \(\frac{4}{5}x=-\frac{1}{2}+\frac{8}{5}\)
=> \(\frac{4}{5}x=\frac{11}{10}\)
=> \(x=\frac{11}{10}:\frac{4}{5}\)
=> \(x=\frac{11}{8}\)
bài 1: \(\frac{x}{3}=\frac{-12}{9}\)=> 9x=-36
=> x=-4
vậy x=-4
\(\frac{4}{5}x-\frac{8}{5}=\frac{-1}{2}\)=> \(\frac{4}{5}x=\frac{-1}{2}+\frac{8}{5}\)
=> \(\frac{4}{5}x=\frac{-5}{10}+\frac{16}{10}\)=\(\frac{11}{10}\)=> \(x=\frac{11}{10}:\frac{4}{5}\)=\(\frac{11}{10}.\frac{5}{4}\)=\(\frac{11}{8}\)
vậy x=\(\frac{11}{8}\)
\(\frac{1}{5}.\left|x\right|-1\frac{2}{5}=\frac{2}{5}\)=> \(\frac{1}{5}.\left|x\right|-\frac{7}{5}=\frac{2}{5}\)
=> \(\frac{1}{5}.\left|x\right|=\frac{2}{5}+\frac{7}{5}=\frac{9}{5}\)=> |x| =\(\frac{9}{5}:\frac{1}{5}\)=9
=> x=9 hoặc x=-9
vậy x=9 hoặc x=-9
Tìm các số x1,x2,x3,...,x8,x9 biết \(\frac{x1+1}{9}=\frac{x2+2}{8}=\frac{x3+3}{7}=...=\frac{x8+8}{2}=\frac{x9+9}{1}\)