Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Sương
Xem chi tiết
Nguyễn Lê Phước Thịnh
5 tháng 2 2022 lúc 20:03

a: Xét (O) có

OH là một phần đường kính

AB là dây

OH⊥AB tại H

Do đó: H là trung điểm của AB

Xét ΔMAB có

MH là đường trung tuyến

MH là đường cao

Do đó:ΔMAB cân tại M

Xét ΔOAM và ΔOBM có

OA=OB

AM=BM

OM chung

Do đó:ΔOAM=ΔOBM

Suy ra: \(\widehat{OAM}=\widehat{OBM}=90^0\)

=>ΔOMB vuông tại B

=>MB là tiếp tuyến

b: Xét (O) có

ΔABC nội tiếp

BC là đường kính

Do đó:ΔABC vuông tại A

Uzumaki Naruto
Xem chi tiết
Đặng Thị Yến Nhi
Xem chi tiết
Uzumaki Naruto
Xem chi tiết
Incursion_03
24 tháng 12 2018 lúc 22:39

Layer 1 O A B C D E H 1

a,Gọi H là giao điểm OA với BC

Vì OB = OC ( bán kính (O) )

AB = AC ( tiếp tuyến )

=> AO là trung trực của BC

=> AO vuông góc với BC tại H

Xét \(\(\Delta\)\)OAB vuông tại B có BH là đường cao

\(\(OB^2=OH.OA\)\)

Mà OB = OD (bán kính)

\(\(\Rightarrow OH.OA=OD^2\)\)

Từ \(\(OH.OA=OD^2\)\)

\(\(\Rightarrow\)\)\(\(\frac{OD}{OH}=\frac{OA}{OD}\)\)

Xét \(\(\Delta\)\)OHD và \(\(\Delta\)\)ODA có

\(\(\frac{OD}{OH}=\frac{OA}{OD}\left(cmt\right)\)\)

^DOA chung

\(\(\Rightarrow\Delta OHD~\Delta ODA\left(c.g.c\right)\)\)

b,Xét \(\(\Delta\)\)ABD và \(\(\Delta\)\)AEB có :

^BAE chung

^BEA = ^DBA ( cùng chắn cung BD)

=> \(\(\Delta ABD~\Delta AEB\left(g.g\right)\)\)

Uzumaki Naruto
24 tháng 12 2018 lúc 23:39

Có cách nào chứng minh Góc BEA=góc DBA ko?  Chắn cung mình chưa học

Nguyen Quang Minh
Xem chi tiết
Nhật Nguyễn
27 tháng 4 2021 lúc 12:22

Ai giả câu c bài 2 đi ạ khó quá 

Chung Phạm Thị
Xem chi tiết
Thảo Nhi
Xem chi tiết
Bao chi
Xem chi tiết
Trần Đức 	Minh
6 tháng 11 2021 lúc 21:37

om cái gì là olm mới đúng

Khách vãng lai đã xóa
Levi2303_
Xem chi tiết

a: Xét (O) có

 

ΔAMD nội tiếp

AD là đường kính

Do đó: ΔAMD vuông tại M

=>AM\(\perp\)MD

b: 

Xét (O) có

\(\widehat{ABC}\) là góc nội tiếp chắn cung AC

\(\widehat{ADC}\) là góc nội tiếp chắn cung AC
Do đó: \(\widehat{ABC}=\widehat{ADC}\)

Xét (O) có

ΔACD nội tiếp

AD là đường kính

Do đó: ΔACD vuông tại C

Xét ΔAHB vuông tại H và ΔACD vuông tại C có

\(\widehat{ABH}=\widehat{ADC}\)

Do đó: ΔAHB~ΔACD

c: Ta có: AM\(\perp\)MD

AM\(\perp\)BC tại H

Do đó: BC//MD

=>BCDM là hình thang

=>\(\widehat{BMD}+\widehat{MBC}=180^0\)

mà \(\widehat{MBC}+\widehat{MDC}=180^0\)(BCDM là tứ giác nội tiếp (O))

nên \(\widehat{BMD}=\widehat{CDM}\)

Hình thang BCDM(BC//MD) có \(\widehat{BMD}=\widehat{CDM}\)

nên BCDM là hình thang cân