a: Xét (O) có
ΔAMD nội tiếp
AD là đường kính
Do đó: ΔAMD vuông tại M
=>AM\(\perp\)MD
b:
Xét (O) có
\(\widehat{ABC}\) là góc nội tiếp chắn cung AC
\(\widehat{ADC}\) là góc nội tiếp chắn cung AC
Do đó: \(\widehat{ABC}=\widehat{ADC}\)
Xét (O) có
ΔACD nội tiếp
AD là đường kính
Do đó: ΔACD vuông tại C
Xét ΔAHB vuông tại H và ΔACD vuông tại C có
\(\widehat{ABH}=\widehat{ADC}\)
Do đó: ΔAHB~ΔACD
c: Ta có: AM\(\perp\)MD
AM\(\perp\)BC tại H
Do đó: BC//MD
=>BCDM là hình thang
=>\(\widehat{BMD}+\widehat{MBC}=180^0\)
mà \(\widehat{MBC}+\widehat{MDC}=180^0\)(BCDM là tứ giác nội tiếp (O))
nên \(\widehat{BMD}=\widehat{CDM}\)
Hình thang BCDM(BC//MD) có \(\widehat{BMD}=\widehat{CDM}\)
nên BCDM là hình thang cân