cho 4a^2 +b^2=5ab với 4a>b>0. tính gia trị bt: Q= 5ab/(16a^2 - b^2)
cho 4a^2 +b^2 = 5ab với 4a>b>0. tính gia trị bt: Q= 5ab/(16a^2 -b^2)
Cho \(4a^2+b^2=5ab\) với \(2a>b>0\). Tính số trị của phân thức \(P=\frac{ab}{4a^2-b^2}\)
Từ \(4a^2+b^2=5ab,\)ta có : \(4a^2-4ab-ab+b^2=0\)
Hay \(\left(a-b\right)\left(4a-b\right)=0\left(.\right)\)
Vì \(2a>b>0\) nên \(4a-b\ne0.\)
Từ \(\left(.\right)\Rightarrow a-b=0\). Tức là \(a=b.\)
Thay \(a=b\) vào \(P\) ta được :
\(P=\frac{ab}{4a^2-b^2}=\frac{a^2}{4a^2-a^2}=\frac{1}{3}\) ( do \(a\ne0\)).
tính giá trị của biểu thức
Cho \(4a^2+b^2=\text{5ab}\) và \(2a>b>0\) , tính giá trị của A \(=\dfrac{ab}{4a^2-b^2}\)
\(Từ\) \(giả\) \(thiết\) : \(4a^2+b^2=\text{5}ab\)
\(\Leftrightarrow4a^2-4ab-ab+b^2\)
\(\Leftrightarrow\left(4a-b\right)\left(a-b\right)=0\)
\(TH1:\) \(4a-b=0\) \((\) \(mẫu\) \(thuẫn\) \(với\) \(2a>b\) \()\)
\(TH2:\) \(a-b=0\)
\(\Rightarrow a=b\)
\(\Rightarrow A=\dfrac{a^2}{4a^2-a^2}\)
\(\Rightarrow A=\dfrac{1}{3}\)
Cho 4a2 + b2 =5ab với 2a > b >0 . Tính số trị của phân thức \(P=\frac{ab}{4a^2-b^2}\)
Theo đề bài ta có :
\(4a^2+b^2=5ab\)
\(\Rightarrow4a^2-4ab-ab+b^2=0\)
\(\Rightarrow\left(a-b\right)\left(4a-b\right)=0\)(1)
Vì \(2a>b>0\)
\(\Rightarrow4a-b\ne0\)
Từ điều (1)
\(\Rightarrow a-b=0\)
\(\Leftrightarrow a=b\)
Thay a=b vào P ta có :
\(P=\frac{ab}{4a^2-b^2}=\frac{a^2}{4a^2-a^2}=\frac{1}{3}\)( vì \(a\ne0\))
Vậy phân thức P có số trị là 1/3 .
Cho \(4a^2+b^2=5ab\)với 2a>b>>0
Tính số trị của phân thức \(F=\frac{ab}{4a^2-b^2}\)
Từ \(4a^2+b^2=5ab\Rightarrow4a^2+b^2-5ab=0\)
\(\Rightarrow4a^2-ab-4ab+b^2=0\)
\(\Rightarrow a\left(4a-b\right)-b\left(4a-b\right)=0\)
\(\Rightarrow\left(a-b\right)\left(4a-b\right)=0\)
\(\Rightarrow\orbr{\begin{cases}a-b=0\\4a-b=0\end{cases}\Rightarrow}\orbr{\begin{cases}a=b\\a=\frac{b}{4}\end{cases}}\)
*)Xét \(a=b\) thì \(F=\frac{b^2}{4b^2-b^2}=\frac{b^2}{3b^2}=\frac{1}{3}\)
*)Xét \(a=\frac{b}{4}\) thì \(F=\frac{\frac{b^2}{4}}{\frac{b^2}{4}-b^2}=-\frac{1}{3}\)
Ta thấy A gồm có 99 số hạng nên ta nhóm mỗi nhóm 3 số hạng.
Ta có: A = 1 + 5 + 52 + 53 + 54 + 55 +...+ 597 + 598 + 599
= (1 + 5 + 52 )+ (53 + 54 + 55 )+...+( 597 + 598 + 599 )
=(1 + 5 + 52 )+ 53(1 + 5 + 52 ) +...+ 597(1 + 5 + 52 )
= ( 1 + 5 + 52)(1 + 53+....+597)
= 31(1 + 53+....+597)
Vì có một thừa số là 31 nên A chia hết cho 31.
P/s Đừng để ý câu trả lời của mình
cho 4a2 + b2 =5ab với 2a > b > 0
tính M = \(\frac{ab}{4a^2-b^2}\)
\(4a^2+b^2=5ab\)
\(4a^2-5ab+b^2=0\)
\(4a^2-4ab-ab+b^2=0\)
\(4a\left(a-b\right)-b\left(a-b\right)=0\)
\(\left(a-b\right)\left(4a-b\right)=0\)
\(\left[\begin{array}{nghiempt}a-b=0\\4a-b=0\end{array}\right.\)
\(\left[\begin{array}{nghiempt}a=b\\4a=b\end{array}\right.\)
mà \(2a>b>0\)
\(\Rightarrow a=b\)
Thay a = b vào M, ta có:
\(M=\frac{b\times b}{4b^2-b^2}\)
\(=\frac{b^2}{3b^2}\)
\(=\frac{1}{3}\)
Vậy . . .
Cho \(4a^2+b^2=5ab\) với \(2a>b>0\)
Tính số trị của phân thức \(P=\frac{ab}{4a^2-b^2}\)
4a2+b2=5ab<=>(4a-b)(a-b)=0
TH1 4a-b=0<=>4a=b
=> \(P=\frac{4a^2}{4a^2-16a^2}=\frac{4a^2}{-12a^2}=\frac{-1}{3}\)
TH2 a-b=0
=> \(P=\frac{a^2}{3a^2}=\frac{1}{3}\)
Ta có : \(4a^2+b^2=5ab\)
\(\Rightarrow4a^2-4ab-ab+b^2=0\)
\(\Rightarrow\left(a-b\right)\left(4a-b\right)=0\) (1)
Vì \(2a>b>0\)
\(\Rightarrow4a-b\ne0\)
Từ (1) \(\Rightarrow a-b=0\)
\(\Rightarrow a=b\)
Thay a hoặc b vào biểu thức P ta có :
\(P=\frac{ab}{4a^2-b^2}=\frac{a^2}{4a^2-a^2}=\frac{1}{3}\) ( a khác 0 )
Cho 4a2 + b2 = 5ab và 2a>b>0. Tính giá trị của biểu thức M= \(\frac{ab}{4a^2-b^2}\)
4a^2 + b^2=5ab
<=>4a^2 + b^2 - 5ab=0
<=>4a(a - b) - b(a - b)=0
<=> (a -b )(4a - b)=0
<=>a-b=0 ; a=b hoặc 4a - b=0 ; a=b/4(loại)
đề lúc đầu sai :v
ĐKXĐ : \(2a\ne b\)\(;\)\(2a\ne-b\)
\(4a^2+b^2=5ab\)\(\Leftrightarrow\)\(\left(a-b\right)\left(4a-b\right)=0\)\(\Leftrightarrow\)\(\orbr{\begin{cases}a-b=0\\4a-b=0\end{cases}\Leftrightarrow\orbr{\begin{cases}a=b\\4a=b\end{cases}}}\)
+) Với \(a=b\)\(\Rightarrow\)\(M=\frac{ab}{4a^2-b^2}=\frac{a^2}{4a^2-a^2}=\frac{a^2}{3a^2}=\frac{1}{3}\)
+) Với \(4a=b\)\(\Rightarrow\)\(M=\frac{ab}{4a^2-b^2}=\frac{a.4a}{4a^2-16a^2}=\frac{4a^2}{-12a^2}=\frac{-1}{3}\)
...
Cho các số thực dương thỏa mãn 4a > b > 0 và 4a2 + b2 = 5ab. Tính giá trị của biểu thức B = \(\frac{ab}{4a^2-b^2}\)