Từ \(4a^2+b^2=5ab,\)ta có : \(4a^2-4ab-ab+b^2=0\)
Hay \(\left(a-b\right)\left(4a-b\right)=0\left(.\right)\)
Vì \(2a>b>0\) nên \(4a-b\ne0.\)
Từ \(\left(.\right)\Rightarrow a-b=0\). Tức là \(a=b.\)
Thay \(a=b\) vào \(P\) ta được :
\(P=\frac{ab}{4a^2-b^2}=\frac{a^2}{4a^2-a^2}=\frac{1}{3}\) ( do \(a\ne0\)).