Cho tam giác ABC có 3 góc nhọn.Các đường cao AD,BE,CF và trực tâm H.BC=a không đổi.Tìm giá trị lớn nhất của tích DH.DA
Cho Tam giác ABC ( AB<AC), BC=a. AD,BE,CF là 3 đường cao, H là trực tâm a) Chứng minh rằng tam giác BHA đồng dạng tam giác BFE và góc DEF=2BAD b)gọi K là giao điểm của AD,EF. Tính (AK*HD)/(AD*KH) c)Tìm vị trí của D trên BC để HD*AD đạt giá trị lớn nhất d)Lấy i là trung điểm của AH. Chứng minh rằng K là trực tâm của tam giác IBC
Cho tam giác ABC cân tại A (góc A nhọn) có đường cao AD và trực tâm H.Chứng minh \(CD^2\)=DH.DA
1. Cho tam giác ABC có AB=2a, góc B= 60độ, góc C=45độ. 3 đường cao AD, BE, CF đồng quy tại trực tâm H. Tính chu vi và diện tích tam giác HBC theo a.
Cho Tam giác ABC ( AB<AC), BC=a. AD,BE,CF là 3 đường cao, H là trực tâm
a) Chứng minh rằng tam giác BHA đồng dạng tam giác BFE và góc DEF=2BAD
b)gọi K là giao điểm của AD,EF. Tính (AK*HD)/(AD*KH)
c)Tìm vị trí của D trên BC để HD*AD đạt giá trị lớn nhất
d)Lấy i là trung điểm của AH. Chứng minh rằng K là trực tâm của tam giác IBC
Cho tam giác ABC có 3 góc nhọn, các đường cao AD, BE, CF và H là trực tâm. Chứng minh rằng:
a) tam giác AFE và tam giác ABC đồng dạng.
b) AD.HD=DB.DC
c) AH.HD=BH.HE=CH.HF
d) HD/AD + HE/BE + HF/CF =1
a: góc BFC=góc BEC=90 độ
=>BFEC nội tiêp
=>góc AFE=góc ACB
mà góc FAE chung
nên ΔAFE đồng dạng với ΔACB
b: Xét ΔDAB vuông tại D và ΔDCH vuông tại D có
góc DAB=góc DCH
=>ΔDAB đồng dạng vơi ΔDCH
=>DA/DC=DB/DH
=>DA*DH=DB*DC
c: Xét ΔHDC vuông tại D và ΔHFA vuông tại F có
góc DHC=góc FHA
=>ΔHDC đồng dạng vơi ΔHFA
=>HD/HF=HC/HA
=>HF*HC=HD*HA
Xet ΔHFB vuông tại F và ΔHEC vuông tại E có
góc FHB=góc EHC
=>ΔHFB đồng dạng với ΔHEC
=>HF/HE=HB/HC
=>HF*HC=HB*HE=HD*HA
Cho tam giác ABC có 3 góc nhọn, các đường cao AD, BE, CF cắt nhau tại H a) Chứng minh tam giác ABE ~ tam giác ACF b) Chứng minh DB.DC=DH.DA
a) Xét ΔABE vuông tại E và ΔACF vuông tại F có
\(\widehat{FAC}\) chung
Do đó: ΔABE∼ΔACF(g-g)
b) Ta có: ΔBEC vuông tại E(gt)
nên \(\widehat{EBC}+\widehat{ECB}=90^0\)(hai góc nhọn phụ nhau)
hay \(\widehat{DBH}+\widehat{ACB}=90^0\)(1)
Ta có: ΔDAC vuông tại D(gt)
nên \(\widehat{DAC}+\widehat{DCA}=90^0\)(hai góc nhọn phụ nhau)
hay \(\widehat{DAC}+\widehat{ACB}=90^0\)(2)
Từ (1) và (2) suy ra \(\widehat{DBH}=\widehat{DAC}\)
Xét ΔDBH vuông tại D và ΔDAC vuông tại D có
\(\widehat{DBH}=\widehat{DAC}\)(cmt)
nên ΔDBH\(\sim\)ΔDAC(g-g)
Suy ra: \(\dfrac{DB}{DA}=\dfrac{DH}{DC}\)(Các cặp cạnh tương ứng tỉ lệ)
hay \(DB\cdot DC=DH\cdot DA\)(đpcm)
a)
Xét ΔABE và ΔACF có:
\(\widehat{A}\) chung
\(\widehat{BEA}=\widehat{CFA}\) (\(=90^0\))
⇒ ΔABE \(\sim\) ΔACF (g.g) (ĐPCM)
Cho tam giác ABC cân tại A (góc A nhọn) có đường cao AD và trực tâm H.Chứng minh \(CD^2\)=DH.DA
cho tam giác ABC nhọn.Các đường cao AD,BE,CF .gọi H là trực tâm a) Tính N=\(\frac{HA.HB}{AC.BC}\)+\(\frac{HA.HC}{AB.BC}\)+\(\frac{HB.HC}{AB.AC}\)
Cho tam giác ABC nhọn nội tiếp (O;R). Có các đường cao AD,BE,CF, H là trực tâm tam giác ABC. Kẻ đường kính AK.
c) Khi BC và (O) cố định , BC=a. Tìm vị trí của A để P= DE+EF+DF lớn nhất, tìm GTLN theo a và R