cho hình vẽ là hình thang biết ab// cd và ad// bc. bd cắt ac tại i. cmr: ib=id
1,cho hình thang abcd (ab//cd) ac cắt bd tại o. biết oa=ob.chứng minh abcd là hình thang cân
2. cho hình thang cân abcd (ab//cd,ab<cd ). Ad cắt bc tại o
a > CMR Tam giac OAB cân
b > Gọi I,J lần lượt là trung điểm của Ab và Cd. CMR ba điểm I, J,O thẳng hàn
c, Qua diểm M thuộc cạnh Ac vẽ đường thằng // với cd,cắt bd tại N. CMR MNAB ,MNDC là các hình thang cân
vì oa=ob
=>tam giác aob là tam giác cân tại o (đn tam giác cân)
=>góc oab=góc oba
mà ab//cd
=> abcd là hình thang cân
đúng thì k cho mik vs ạ
cho hình thang abcd có đáy lớn cd đáy nhỏ ab e là trung điểm ac f là trung điểm bd vẽ em vuông bc m thuộc bc fn vuông ad f thuộc ad
em và fn cắt tại i cmr ic=id
Cho hình thang ABCD (AB//CD), E là trung điểm của AD, F là trung điểm của BC. Đường thẳng EF cắt BD tại I, EF cắt AC tại K.
a) CMR: AK=KC; BI=ID
b) Biết AB=6cm, CD=10cm.Tính EI, KF, IK
Cho hình thang ABCD đáy nhỏ CD. Từ A vẽ đgt // vs BC cắt Ac tại M. Từ C vẽ đgt // vs AD cắt AB tại F. Qua F vẽ đgt // vs AC cắt BC tại D. CMR:
a, MP // AB
b, gọi I là gđ của BD và CF. CMR: IP//CD
c,MP, CF, BD đồng quy
m.n giúp mk nha thanks các bn nhìu ! :))
Cho hình thang ABCD (ab//cd) O là giao điểm của 2 đường chéo AC và BD . ĐUowngf thẳng vẽ qua O // AD cắt AD và BC theo thứ tự tại M và N . CMR : 1/AB + 1/CD = 2/MN
Sửa đề: Đường thẳng qua O song song với AB
Xét ΔAOB và ΔCOD có
\(\widehat{AOB}=\widehat{COD}\)(hai góc đối đỉnh)
\(\widehat{BAO}=\widehat{DCO}\)(hai góc so le trong, AB//CD)
Do đó: ΔAOB\(\sim\)ΔCOD(g-g)
Suy ra: \(\dfrac{OA}{OC}=\dfrac{OB}{OD}\)(Các cặp cạnh tương ứng tỉ lệ)
\(\Leftrightarrow\dfrac{OA}{OB}=\dfrac{OC}{OD}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{OA}{OB}=\dfrac{OC}{OD}=\dfrac{OA+OC}{OB+OD}=\dfrac{AC}{BD}\)
\(\Leftrightarrow\dfrac{OC}{OD}=\dfrac{AC}{BD}\)
\(\Leftrightarrow\dfrac{CO}{CA}=\dfrac{DO}{DB}\)(1)
Xét ΔDAB có
M∈AD(gt)
O∈BD(gt)
MO//AB(gt)
Do đó:\(\dfrac{DO}{DB}=\dfrac{MO}{AB}\)(Hệ quả của Định lí Ta lét)(2)
Xét ΔABC có
O∈AC(gt)
N∈BC(gt)
ON//AB(gt)
Do đó: \(\dfrac{CO}{CA}=\dfrac{ON}{AB}\)(Hệ quả của Định lí Ta lét)(3)
Từ (1), (2) và (3) suy ra \(\dfrac{OM}{AB}=\dfrac{ON}{AB}\)
hay OM=ON(đpcm)
\(\Leftrightarrow OM+ON=MN=2\cdot ON\)
Xét ΔBCD có
O∈BD(gt)
N∈BC(gt)
ON//DC(gt)
Do đó: \(\dfrac{ON}{CD}=\dfrac{BN}{BC}\)(Hệ quả của Định lí Ta lét)(4)
Xét ΔABC có
O∈AC(gt)
N∈BC(gt)
ON//DC(gt)
Do đó: \(\dfrac{ON}{AB}=\dfrac{CN}{CB}\)(Hệ quả của Định lí Ta lét)
\(\Leftrightarrow\dfrac{ON}{AB}+\dfrac{ON}{CD}=\dfrac{BN}{BC}+\dfrac{CN}{BC}=1\)
\(\Leftrightarrow\dfrac{1}{AB}+\dfrac{1}{CD}=\dfrac{1}{ON}=\dfrac{2}{2\cdot ON}=\dfrac{2}{MN}\)(đpcm)
1. Cho hình thang ABCD (đáy nhỏ AB, đáy lớn CD). Qua A vẽ đường thẳng song song BC cắt đường chéo BD tại E. Qua B vẽ đường thẳng song song AD cắt đường chéo AC tại F.
a, CMR: DEFC là hình thang cân
b, Tính EF biết AB=5cm, CD=10cm.
1. Cho hình thang ABCD (đáy nhỏ AB, đáy lớn CD). Qua A vẽ đường thẳng song song BC cắt đường chéo BD tại E. Qua B vẽ đường thẳng song song AD cắt đường chéo AC tại F.
a, CMR: DEFC là hình thang cân
b, Tính EF biết AB=5cm, CD=10cm.
Cho hình thang cân ABCD (AB//CD, AB<CD)AD cắt BC tại O
a) CMR tam giác OAB cân
b)Gọi I,J lần lượt là trung điểm của AB và CD. CMR ba điểm I,J,O thẳng hàng
c) Quan điểm M thuộc cạnh AC, vẽ đường thẳng song song với CD, cắt BD tại N. CMR MNAB,MNCD là hình thang cân
Cho hình thang ABCD (AB//CD). Gọi M là trung điểm của CD. AM cắt BD tại I, BM cắt AC tại K.
a, cmr IK//AB
b, IK cắt AD tại E cắt BC tại F. Cmr EI=IK=KF
a. Xét △DMI có: AB//DM.
\(\Rightarrow\dfrac{AB}{DM}=\dfrac{IA}{IM}\) (hệ quả định lí Ta-let)
a. Xét △CMK có: AB//CM.
\(\Rightarrow\dfrac{AB}{CM}=\dfrac{KB}{KM}\) (hệ quả định lí Ta-let)
Mà \(DM=CM\) (M là trung điểm DC)
\(\Rightarrow\dfrac{AB}{DM}=\dfrac{KB}{KM}\)
-Xét △ABM có: \(\dfrac{IA}{IM}=\dfrac{KB}{KM}\left(=\dfrac{AB}{DM}\right)\)
\(\Rightarrow\)IK//AB (định lí Ta-let đảo).
b) -Xét △ADM có: EI//DM.
\(\Rightarrow\dfrac{EI}{DM}=\dfrac{AI}{AM}\) (hệ quả định lí Ta-let)
-Xét △ACM có: KI//CM.
\(\Rightarrow\dfrac{IK}{CM}=\dfrac{AI}{AM}\) (hệ quả định lí Ta-let)
Mà \(DM=CM\) (M là trung điểm DC)
\(\Rightarrow\dfrac{IK}{DM}=\dfrac{AI}{AM}=\dfrac{EI}{DM}\) nên \(IK=EI\).
-Xét △BCM có: KF//CM.
\(\Rightarrow\dfrac{KF}{CM}=\dfrac{BK}{BM}\) (hệ quả định lí Ta-let)
-Xét △BDM có: IK//DM.
\(\Rightarrow\dfrac{IK}{DM}=\dfrac{BK}{BM}\) (hệ quả định lí Ta-let)
Mà \(DM=CM\) (M là trung điểm DC)
\(\Rightarrow\dfrac{IK}{CM}=\dfrac{BK}{BM}=\dfrac{KF}{CM}\) nên \(IK=KF\)
-Vậy \(EI=IK=KF\)