Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
qlamm
Xem chi tiết
Nguyễn Lê Phước Thịnh
21 tháng 1 2022 lúc 22:21

a: Xét ΔABM và ΔACN có

AB=AC
\(\widehat{ABM}=\widehat{ACN}\)

BM=CN

Do đó: ΔABM=ΔACN

Suy ra: AM=AN

hay ΔAMN cân tại A

b: Xét ΔAHB vuông tại H và ΔAKC vuông tại K có

AB=AC

\(\widehat{HAB}=\widehat{KAC}\)

Do đó: ΔAHB=ΔAKC

Suy ra: BH=CK

c: Ta có: ΔAHB=ΔAKC

nên AH=AK

Anh ko có ny
21 tháng 1 2022 lúc 22:22

a) AM=AN

b)BH=CK

c)AH=AK

Tham khảo:

A) Vì tam giác ABC cân tại A nên AB=AC góc B= góc C

Xét tam giác ΔABM vàΔ ACN CÓ

AB=AC(cmt)

BM= CN (gt)

Ta có góc ACB= góc ABC ( cmt ) mà góc ACN = ABM ( kề bù ) với góc ACB VÀ GÓC ABC

⇒ΔABM = ΔACN ( c-g-c)

B) Xét ΔMHB và ΔNKC có:

 Góc M = góc N ( 2 góc tg ứng từ cm câu a)

Bm=Cn(gt)

=> ΔMHB=ΔNKC (ch-gn)

C) ta có : 

góc C2 = góc B2 ( 2 góc tg ứng từ cm câu B)

Mà góc C1 = góc C2 ( đối đỉnh)

Và góc B1=góc B2 ( đối đỉnh)

=> góc B1=  góc C1

=> ΔOBC cân tại O

 

image

 

Câu d,e lam tự làm nha ;-;

Thiên Ly
Xem chi tiết
Phía sau một cô gái
8 tháng 1 2022 lúc 16:02

( Hình bạn tự vẽ giúp mình nha )

a) Xét △ ABM và △ ACN có

          AB = AC

          BM = CN

         \(\widehat{ABM}=\widehat{ACN}\)

⇒ △ ABM = △ ACN ( c - g - c )

⇒ AM = AN ( hai cạnh tương ứng )

Suy ra: △ AMN cân tại A

b) Xét tam giác vuông BME và tam giác vuông CNF ta có:

         MB = CN

         \(\widehat{EMB}=\widehat{CNF}\)   ( vì △ AMN cân tại A )

⇒ △ BME = △ CNF ( ch - gn )

c) Vì △ BME = △ CNF ( cmt )

⇒ ME = CF

⇒ EA = FA  

Xét tam giác vuông EAO và tam giác vuông AOF ta có:

          AE = FA

          AO cạnh chung

⇒ △ EOA = △ FOA ( ch - cgv )

⇒ \(\widehat{EAO}=\widehat{FAO}\)

Hay AO là tia phân giác góc \(\widehat{MAN}\)

d) Ta có:     EO ⊥ AM

                   MH ⊥ AM

⇒ EO // MH

Lại có:    \(\widehat{AOE}=\widehat{AHM}\) ( cùng phụ \(\widehat{EAO}\) )

Từ đó suy ra:    A, O, H thẳng hàng

thám tử lừng danh cô đơn
Xem chi tiết
thám tử lừng danh cô đơn
27 tháng 2 2022 lúc 21:10

help

 

Nguyễn Lê Phước Thịnh
27 tháng 2 2022 lúc 21:11

a: Xét ΔABM và ΔACN có

AB=AC

\(\widehat{ABM}=\widehat{ACN}\)

BM=CN

Do đó: ΔABM=ΔACN

Suy ra: AM=AN

hay ΔAMN cân tại A

b: Xét ΔHBM vuông tại H và ΔKCN vuông tại K có

BM=CN

\(\widehat{M}=\widehat{N}\)

Do đó: ΔHBM=ΔKCN

Suy ra: HB=KC

c: Ta có: ΔHBM=ΔKCN

nên \(\widehat{HBM}=\widehat{KCN}\)

=>\(\widehat{OBC}=\widehat{OCB}\)

hayΔOBC cân tại O

Florentino
18 tháng 10 2022 lúc 19:44

a: Xét ΔABM và ΔACN có

AB=AC

ˆABM=ˆACN

BM=CN

Do đó: ΔABM=ΔACN

Suy ra: AM=AN

hay ΔAMN cân tại A

b: Xét ΔHBM vuông tại H và ΔKCN vuông tại K có

BM=CN

ˆM=ˆN

Do đó: ΔHBM=ΔKCN

Suy ra: HB=KC

c: Ta có: ΔHBM=ΔKCN

nên ˆHBM=ˆKCN

=>ˆOBC=ˆOCB

hayΔOBC cân tại O

Quang Anh Nguyễn
Xem chi tiết
Nguyễn Lê Phước Thịnh
4 tháng 2 2022 lúc 22:45

a: Xét ΔABM và ΔACN có 

AB=AC

\(\widehat{ABM}=\widehat{ACN}\)

BM=CN

Do đó: ΔABM=ΔACN

Suy ra: AM=AN

hay ΔAMN cân tại A

b: Xét ΔABH vuông tại H và ΔACK vuông tại K có

AB=AC

\(\widehat{HAB}=\widehat{KAC}\)

Do đó: ΔABH=ΔACK

Suy ra: BH=CK

c: Ta có: ΔABH=ΔACK

nên AH=AK

d: Xét ΔHBM vuông tại H và ΔKCN vuông tại K có 

BM=CN

\(\widehat{M}=\widehat{N}\)

Do đó: ΔHBM=ΔKCN

Suy ra: \(\widehat{HBM}=\widehat{KCN}\)

mà \(\widehat{HBM}=\widehat{OBC}\)

và \(\widehat{KCN}=\widehat{OCB}\)

nên \(\widehat{OBC}=\widehat{OCB}\)

hay ΔOBC cân tại O

trì ngâm
Xem chi tiết
Dương Nguyễn
Xem chi tiết
Nguyễn Lê Phước Thịnh
4 tháng 3 2022 lúc 19:57

Bài 9:

a: Xét ΔABM và ΔACN có

AB=AC

\(\widehat{ABM}=\widehat{ACN}\)

BM=CN

Do đó: ΔABM=ΔACN

Suy ra: AM=AN

hay ΔAMN cân tại A

b: Xét ΔAHB vuông tại H và ΔAKC vuông tại K có

AB=AC

\(\widehat{HAB}=\widehat{KAC}\)

Do đó: ΔAHB=ΔAKC

Suy ra: BH=CK

c: Ta có: ΔAHB=ΔAKC

nên AH=AK

Anh Bao
Xem chi tiết
Buddy
3 tháng 3 2021 lúc 20:41

Violympic toán 7

Linh Lê
Xem chi tiết
Nguyễn Lê Phước Thịnh
26 tháng 2 2021 lúc 22:33

a) Ta có: \(\widehat{ABM}+\widehat{ABC}=180^0\)(hai góc kề bù)

\(\widehat{ACN}+\widehat{ACB}=180^0\)(hai góc kề bù)

mà \(\widehat{ABC}=\widehat{ACB}\)(hai góc ở đáy của ΔABC cân tại A)

nên \(\widehat{ABM}=\widehat{ACN}\)

Xét ΔABM và ΔACN có 

AB=AC(ΔABC cân tại A)

\(\widehat{ABM}=\widehat{ACN}\)(cmt)

BM=CN(cmt)

Do đó: ΔABM=ΔACN(c-g-c)

Suy ra: AM=AN(hai cạnh tương ứng)

Xét ΔAMN có AM=AN(cmt)

nên ΔAMN cân tại A(Định nghĩa tam giác cân)

Nguyễn Bé Nak
Xem chi tiết
Nguyễn Trần Thành Đạt
17 tháng 2 2021 lúc 5:23

Này là môn Văn em đừng đăng đề toán nhé!

Hoàng Trang
Xem chi tiết
Nguyễn Phương Linh
6 tháng 1 2018 lúc 15:57

Bạn tự vẽ hình nha

a.Vì tam giác ABC cân tại A nên AB= AC và góc ABC = góc ACB

<=> góc ABM = góc ACN (vì các góc kề bù với nhau)

Xét tam giác ABM và tam giác ACN

Có: AB = AC (CMT)

      góc ABM = góc ACN (CMT)

      BM = CN (gt)

<=> tam giác ABM = tam giác ACN (c.g.c)

<=> AM = AN ( 2 góc tương ứng)

<=> tam giác AMN cân tại A

Nguyễn Phương Linh
6 tháng 1 2018 lúc 16:00

b. Vì tam giác ABM = tam giác ACN (CMT)

<=> góc MAB = góc CAN ( 2 góc tương ứng)

Xét tam giác vuông AHB và tam giác vuông AKC

Có: AB= AC (CMT)

      góc AHB= góc AKC= 90 độ

     góc MAB = góc CAN (CMT)

<=> tam giác AHB = tam giác AKC ( cạnh huyền- góc nhọn)