Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Hữu Thành Vinh
Xem chi tiết
Hoàng Đình Bảo
9 tháng 5 2022 lúc 12:33

$\frac{1.3.5...(2n-1)}{(n+1)(n+2)...(n+n)}=\frac{1}{2^n}(*)$

Với $n=1$ thì $(*)\Leftrightarrow \frac{1}{2}=\frac{1}{2}$

Vậy $(*)$ đúng với $n=1$

Giả sử với $n=k$,$ k\in \mathbb{N^*}$ thì $(*)$ đúng, tức là: 

$\frac{1.3.5...(2k-1)}{(k+1)(k+2)...(k+k)}=\frac{1}{2^k}$

Ta cần chứng minh với $n=k+1$ thì $(*)$ đúng, tức là: 

$\frac{1.3.5...(2k+1)}{(k+2)(k+3)...(2k+2)}=\frac{1}{2^{k+1}}=\frac{1}{2^k}.\frac{1}{2}$

$\Leftrightarrow \frac{1.3.5...(2k+1)}{(k+2)(k+3)...(2k+2)}=\frac{1.3.5...(2k-1)}{2(k+1)(k+2)...(k+k)}$

$\Leftrightarrow \frac{1.3.5...(2k-1)2k(2k+1)}{(k+2)(k+3)...2k(2k+1)(2k+2)}=\frac{1.3.5...(2k-1)}{2(k+1)(k+2)...2k}$

$\Leftrightarrow \frac{2k(2k+1)}{2k(2k+1)(2k+2)}=\frac{1}{2(k+1)}$

$\Leftrightarrow \frac{1}{(2k+2)}=\frac{1}{2(k+1)}$

Do đó với $n=k+1$ thì $(*)$ đúng

$\Rightarrow \frac{1.3.5...(2n-1)}{(n+1)(n+2)...(n+n)}=\frac{1}{2^n}$

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Nguyễn đức huy
Xem chi tiết
Sách Giáo Khoa
Xem chi tiết
Nguyen Thuy Hoa
27 tháng 5 2017 lúc 11:48

Căn bậc hai. Căn bậc ba

nhóm 5
Xem chi tiết
Nguyen My Van
17 tháng 5 2022 lúc 15:00

Ta có: \(\dfrac{2}{\left(n-1\right)n\left(n+1\right)}=\dfrac{\left(n+1\right)-\left(n-1\right)}{\left(n-1\right)n\left(n+1\right)}=\dfrac{1}{\left(n-1\right)n}-\dfrac{1}{n\left(n+1\right)}\)

Aya aya
Xem chi tiết

a) Vì 3\(⋮\)n

=> n\(\in\)Ư(3)={ 1; 3 }

Vậy, n=1 hoặc n=3

nguyên gfgr
17 tháng 10 2018 lúc 19:23

A:    n=3;1                  E:     n=2

B:     n=6;2                  F:    n=2

c:     n=1                     G:     n=2

D:    n=2                      H:     n=5

Lê Thị Trà MI
Xem chi tiết
Nguyen Nguyen
18 tháng 9 2016 lúc 21:11

Do n( n+1) là hai số tự nhiên liên tiếp ( n thuộc N) => n( n+1) chia hết cho 2 (1)

Do 2n chia hết cho 2 => 2n + 1 chia hết cho 3 ( 2)    ( đoạn này hơi tắt)

Từ (1) và (2) => n ( n+1) ( 2n+1) chia hết cho BCNN( 2, 3) hay n( n+1) ( 2n+1) chia hết cho 6( đpcm) 

k nha

Chi Khánh
Xem chi tiết
Đoàn Đức Hà
8 tháng 8 2021 lúc 18:02

\(\frac{1}{\left(n-1\right)n\left(n+1\right)}=\frac{1}{2}.\frac{2}{\left(n-1\right)n\left(n+1\right)}=\frac{1}{2}.\frac{\left(n+1\right)-\left(n-1\right)}{\left(n-1\right)n\left(n+1\right)}\)

\(=\frac{1}{2}\left[\frac{1}{\left(n-1\right)n}-\frac{1}{n\left(n+1\right)}\right]\)

Ta có đpcm. 

Khách vãng lai đã xóa
Nguyễn Bùi Minh Thư
Xem chi tiết
I don
2 tháng 9 2018 lúc 17:04

a) (2n-1)4 : (2n-1) = 27

(2n-1)3 = 27  =33

=> 2n - 1= 3

=> 2n = 4

n = 2

phần b,c làm tương tự nha bn

I don
2 tháng 9 2018 lúc 17:05

d) (21+n) : 9 = 95:94

(2n+1) : 9 = 9

2n + 1 = 81

2n = 80

n = 40

Đào Trần Tuấn Anh
2 tháng 9 2018 lúc 17:18

Tìm số tự nhiên n, biết :

a/ (2.n1)4:(2.n1)=27

\(\left(2.n-1\right)^3=27\)

\(2.n-1=3^3\Rightarrow2.n-1=3\)

2.n - 1 = 3

2.n      = 3 + 1

   n      =  4 : 2

   n      =  2

B,C tương tự nha

d) \(\left(21+n\right):9=9^5:9^4\)

   \(\left(21+n\right):9=9\)

        \(21+n=9.9\)

         \(21+n=81\)

                 \(n=81-21\)

                  \(n=60\)

            

        

Nguyễn Thị Đoan Trang
Xem chi tiết