Với n tự nhiên, \(\left(-1\right)^n.\left(-1\right)^{2n+1}.\left(-1\right)^{n+1}=....\)
Với n là số tự nhiên khác 0; Chứng minh \(\dfrac{1\cdot3\cdot5...\left(2n-1\right)}{\left(n+1\right)\left(n+2\right)\left(n+3\right)...\left(n+n\right)}=\dfrac{1}{2^n}\)
Help me please!
$\frac{1.3.5...(2n-1)}{(n+1)(n+2)...(n+n)}=\frac{1}{2^n}(*)$
Với $n=1$ thì $(*)\Leftrightarrow \frac{1}{2}=\frac{1}{2}$
Vậy $(*)$ đúng với $n=1$
Giả sử với $n=k$,$ k\in \mathbb{N^*}$ thì $(*)$ đúng, tức là:
$\frac{1.3.5...(2k-1)}{(k+1)(k+2)...(k+k)}=\frac{1}{2^k}$
Ta cần chứng minh với $n=k+1$ thì $(*)$ đúng, tức là:
$\frac{1.3.5...(2k+1)}{(k+2)(k+3)...(2k+2)}=\frac{1}{2^{k+1}}=\frac{1}{2^k}.\frac{1}{2}$
$\Leftrightarrow \frac{1.3.5...(2k+1)}{(k+2)(k+3)...(2k+2)}=\frac{1.3.5...(2k-1)}{2(k+1)(k+2)...(k+k)}$
$\Leftrightarrow \frac{1.3.5...(2k-1)2k(2k+1)}{(k+2)(k+3)...2k(2k+1)(2k+2)}=\frac{1.3.5...(2k-1)}{2(k+1)(k+2)...2k}$
$\Leftrightarrow \frac{2k(2k+1)}{2k(2k+1)(2k+2)}=\frac{1}{2(k+1)}$
$\Leftrightarrow \frac{1}{(2k+2)}=\frac{1}{2(k+1)}$
Do đó với $n=k+1$ thì $(*)$ đúng
$\Rightarrow \frac{1.3.5...(2n-1)}{(n+1)(n+2)...(n+n)}=\frac{1}{2^n}$
cho f(x)=(x2+x+1)2+1 với mọi x thuộc N.
a)tìm x để f(x) là số tự nhiên
b)thu gọn:
Pn=\(\frac{f\left(1\right).f\left(3\right).....f\left(2n-1\right)}{f\left(2\right).f\left(4\right).....f\left(2n\right)}\) với n thuộc N*
Với n là số tự nhiên, chứng minh :
\(\left(\sqrt{n+1}-\sqrt{n}\right)^2=\sqrt{\left(2n+1\right)^2}-\sqrt{\left(2n+1\right)^2-1}\)
Viết đẳng thức trên khi n = 1, 2, 3, 4
Với mọi số tự nhiên \(n>1\) giải thích tại sao \(\dfrac{2}{\left(n-1\right)n\left(n+1\right)}=\dfrac{1}{\left(n-1\right)n}-\dfrac{1}{n\left(n+1\right)}\)
Ta có: \(\dfrac{2}{\left(n-1\right)n\left(n+1\right)}=\dfrac{\left(n+1\right)-\left(n-1\right)}{\left(n-1\right)n\left(n+1\right)}=\dfrac{1}{\left(n-1\right)n}-\dfrac{1}{n\left(n+1\right)}\)
tìm số tự nhiên n biết
a) \(3⋮n\)
b)\(5⋮\left(n-1\right)\)
c)\(6⋮\left(2n+1\right)\)
d)\(n+4⋮\left(n-1\right)\)
e)\(\left(2n+4\right)⋮\left(n-1\right)\)
f)\(\left(3n+2\right)⋮\left(n-1\right)\)
g)\(\left(a^2+1\right)⋮\left(n-1\right)\)
h)\(\left(n^2+2n+7\right)⋮\left(n+2\right)\)
AI MHAMH MÌNH TICK RIÊNG CÂU H THÌ CHỨNG MINH HỌ MÌNH
a) Vì 3\(⋮\)n
=> n\(\in\)Ư(3)={ 1; 3 }
Vậy, n=1 hoặc n=3
A: n=3;1 E: n=2
B: n=6;2 F: n=2
c: n=1 G: n=2
D: n=2 H: n=5
Chứng minh rằng với mọi số tự nhiên n ta có : \(n\left(n+1\right)\left(2n+1\right)\)Chia hết cho 6
Do n( n+1) là hai số tự nhiên liên tiếp ( n thuộc N) => n( n+1) chia hết cho 2 (1)
Do 2n chia hết cho 2 => 2n + 1 chia hết cho 3 ( 2) ( đoạn này hơi tắt)
Từ (1) và (2) => n ( n+1) ( 2n+1) chia hết cho BCNN( 2, 3) hay n( n+1) ( 2n+1) chia hết cho 6( đpcm)
k nha
Với mọi số tự nhiên n > 2 . Chứng minh rằng \(\frac{1}{\left(n-1\right).n.\left(n+1\right)}=\frac{1}{2}\left[\frac{1}{\left(n-1\right).n}-\frac{1}{n.\left(n+1\right)}\right]\)
\(\frac{1}{\left(n-1\right)n\left(n+1\right)}=\frac{1}{2}.\frac{2}{\left(n-1\right)n\left(n+1\right)}=\frac{1}{2}.\frac{\left(n+1\right)-\left(n-1\right)}{\left(n-1\right)n\left(n+1\right)}\)
\(=\frac{1}{2}\left[\frac{1}{\left(n-1\right)n}-\frac{1}{n\left(n+1\right)}\right]\)
Ta có đpcm.
Tìm số tự nhiên n, biết :
a/ \(\left(2.n-1\right)^4:\left(2.n-1\right)=27\)
b/ \(\left(2n+1\right)^5:\left(2.n+1\right)^2=1\)
c/ \(\left(n+1\right)^3:\left(n+1\right)=4\)
d/ \(\left(21+n\right):9=9^5:9^4\)
a) (2n-1)4 : (2n-1) = 27
(2n-1)3 = 27 =33
=> 2n - 1= 3
=> 2n = 4
n = 2
phần b,c làm tương tự nha bn
d) (21+n) : 9 = 95:94
(2n+1) : 9 = 9
2n + 1 = 81
2n = 80
n = 40
Tìm số tự nhiên n, biết :
a/ (2.n−1)4:(2.n−1)=27
\(\left(2.n-1\right)^3=27\)
\(2.n-1=3^3\Rightarrow2.n-1=3\)
2.n - 1 = 3
2.n = 3 + 1
n = 4 : 2
n = 2
B,C tương tự nha
d) \(\left(21+n\right):9=9^5:9^4\)
\(\left(21+n\right):9=9\)
\(21+n=9.9\)
\(21+n=81\)
\(n=81-21\)
\(n=60\)
cho \(A=\frac{7}{3}.\frac{37}{3^2}....\frac{6^{2n}+1}{3^{2n}}\)và \(B=\left(1+\frac{1}{3}\right)\left(1+\frac{1}{3^2}\right)...\left(1+\frac{1}{3^{2n}}\right)\)với n thuộc N
a) Chứng minh: 5A-2B là số tự nhiên
b) Chứng minh với mọi số tự nhiên n khác 0 thì 5A-2B chia hết cho 45