CM nè : a/d=(a/b)^3 . Biết rằng a,b,c,d khác 0 và a/b=b/c=c/d
Giúp nha
Cho b^2=ac; c^2=bd với b,c,d khác 0; b+c khác d, b^3+c^3 khác d^3Chứng mỉnh rằng a/b=b/c=c/d và 3a^3-4b^3+5c^3/3b^3-4c^3+5d^3=a/d
giúp ;-;
cho a/b = c/a # + - 1 và c # 0
chứng minh: (a-b/c-d)2 = a.b/c.d
chú ý nè :# 1 ; # 0 là khác 1; khác 0 nha các bạn
cho a/b=c/d khác 1 và -1 và c khác 0. Chứng minh rằng:
a) (a-b/c-d)^2=ab/cd
b) (a+b/c+d)^3=a^3-b^3/c^3-d^3
Làm ơn giúp mk với mai mình phải nộp bài rồi
CẢM ƠN MN TRƯỚC NHA=)))
vì -1 hơn 1 hai số cho nên;
a) a/b và c/d ^2 =ab/cd hơn kém nhau 2
b) dựa theo tính chất kết hợp (a+b/c+d ) ^3 = a ^3 ...
1.Tìm x, y, z, biết:
a,11x=8y;7y=11z va x+y-10z=-102
c, x/y=9/25; y/z=10/13 và x-3y+2z=6
2. Tìm x, y, z biết:
a, x/8= y/3 = z/10 và xy +yz+zx=1206
b, x/4=2y/5=5z/6 và x^2-3y^2+2z^2=325.
3. Cho b^2=ac, c^2=bd vs b,c,d khác 0 và b+c+d khác 0. CM: a^3+b^3+c^3/b^3+c^3+d^3=(a+b+c/b+c+d)^2
4. Cho a,b,c khác 0 thỏa mãn: b^2=ac. CMR: a/c=(a+2018b/b+2018c)^2
Giúp mk vs nha. Mk sẽ tick choa.
CMR: nếu (a+b+c+d).(a-b-c+d)=(a-b+c-d).(a+b-c-d) thì a/c= b/d
Giúp mik với ạ
(a+b+c+d)(a+d-b-c)=(a-b+c-d)(a+b-c-d)
=>(a+d)^2-(b+c)^2=(a-d)^2-(b-c)^2
=>(a+d)^2-(a-d)^2=(b+c)^2-(b-c)^2
=>(a+d-a+d)(a+d+a-d)=(b+c+b-c)(b+c-b+c)
=>4ad=4bc
=>ad=bc
=>a/c=b/d
a). Cho a/b=c/d( với b+d khác 0)
CM: a/b=a+c/b+c
b). Cho a/b+c/d( a,b,c,d khác 0)
CM: a-b/a=c-d/c
Cho tỉ lệ thức \(\dfrac{a}{b}=\dfrac{c}{d}\)
Chứng minh rằng \(\dfrac{a}{a-b}=\dfrac{c}{c-d}\)
bằng 3 các(giả thiết a khác b;c khác d và mỗi số a,b,c,d khác 0)
Cách 1:
Ta xét tích a(c-d) và c(a-b)
Ta có: a(c-d)=ac-ad (1)
c(a-b)=ac-bc(2)
Ta lại có \(\dfrac{a}{c}=\dfrac{c}{d}\)=>ad=bc (3)
Từ (1), (2), (3) ta có a(c-d)=c(a-d). Do đó \(\dfrac{a}{a-b}=\dfrac{c}{c-d}\)
Cách 2:
Đặt \(\dfrac{a}{b}=\dfrac{c}{d}\)=k thì a=bk, c=dk.
Xét \(\dfrac{a}{a-b}=\dfrac{bk}{bk-b}=\dfrac{bk}{b\left(k-1\right)}=\dfrac{k}{k-1}\left(1\right)\)
Xét \(\dfrac{c}{c-d}=\dfrac{dk}{dk-d}=\dfrac{dk}{d\left(k-1\right)}=\dfrac{k}{k-1}\left(2\right)\)
Từ (1) và (2)=> \(\dfrac{a}{a-b}=\dfrac{c}{c-d}\)
Cách 3: Ta có
\(\dfrac{a}{b}=\dfrac{c}{d}=>\dfrac{a}{c}=\dfrac{b}{d}\)
Aps dụng tính chất dãy tỉ số bằng nhau:
\(\dfrac{a}{c}=\dfrac{b}{d}=>\dfrac{a-b}{c-d}\)
=>\(\dfrac{a}{c}=\dfrac{a-b}{c-d}=>\dfrac{a}{a-b}=\dfrac{c}{c-d}\)
Ta có: \(\dfrac{a}{b}=\dfrac{c}{d}\)
\(\Leftrightarrow\dfrac{b}{a}=\dfrac{d}{c}\)
\(\Leftrightarrow\dfrac{b}{a}-1=\dfrac{d}{c}-1\)
\(\Leftrightarrow\dfrac{b-a}{a}=\dfrac{d-c}{c}\)
\(\Leftrightarrow\dfrac{a-b}{a}=\dfrac{c-d}{c}\)
hay \(\dfrac{a}{a-b}=\dfrac{c}{c-d}\)(đpcm)
cho a/b=b/c=c/d và a+b+c khác 0 chứng minh rằng (a+b+c)^3/(b+c+d)^3
Cho tỉ lệ thức \(\frac{a}{b}=\frac{c}{d}\), b; c khác 0. Chứng tỏ rằng a khác b, c khác d thì ta có các tỉ lệ thức sau:
\(\frac{a}{a+b}=\frac{c}{c+d};\frac{a}{a-b}=\frac{c}{c-d};\frac{a+b}{a-b}=\frac{c+d}{c-d}\)
nhớ là cm từng tỉ lệ thức nha