Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
minh son
Xem chi tiết
tth_new
21 tháng 7 2019 lúc 8:43

a) Xét tam giác DBM và tam giác ABM có:

BM: là cạnh huyền (vừa cạnh chung)

^MDB = ^MAB = 90o

^DBM = ^ABM (giả thiết do BM là tia phân giác)

\(\Rightarrow\)\(\Delta\)DBM = \(\Delta\) ABM (cạnh huyền - góc nhọn)

\(\Rightarrow\) AB = BD

b) Xét \(\Delta\) ABC và \(\Delta\) DBE có:

AB = BD (CMT)

^B chung

^BAC = ^EDB = 90o

\(\Rightarrow\) \(\Delta\) ABC = \(\Delta\) DBE (cạnh góc vuông - góc nhọn kề cạnh ấy)

c) (không chắc nha). Từ đề bài suy ra ^NHM = ^NKM = 90o (kề bù với ^DHM = ^AKM = 90o, giả thiết)

Từ đó, ta có N cách đều hai tia MH, MK nên nằm trên đường phân ^HMK hay MN là tia phân giác ^HMK.

d)(không chắc luôn:v) Ta sẽ chứng minh BN là tia phân giác ^ABC.

Thật vậy, từ N, hạ NF vuông góc BC, hạ NG vuông góc với AB.

Đến đấy chịu, khi nào nghĩ ra tính tiếp.

a)Xét ∆ vuông BAM và ∆ vuông BDM ta có : 

BM chung 

ABM = DBM ( BM là phân giác) 

=> ∆BAM = ∆BDM ( ch-gn)

=> BA = BD 

AM = MD

b)Xét ∆ vuông ABC và ∆ vuông DBE ta có : 

BA = BD 

B chung 

=> ∆ABC = ∆DBE (cgv-gn)

c) Xét ∆ vuông AKM và ∆ vuông DHM ta có : 

AM = MD( cmt)

AMK = DMH ( đối đỉnh) 

=> ∆AKM = ∆DHM (ch-gn)

=> MAK = HDM ( tương ứng) 

Xét ∆AMN và ∆DNM ta có : 

AM = MD 

MN chung 

MAK = HDM ( cmt)

=> ∆AMN = ∆DNM (c.g.c)

=> DNM = ANM ( tương ứng) 

=> MN là phân giác AND 

d) Vì MN là phân giác AND 

=> M , N thẳng hàng (1)

Vì BM là phân giác ABC 

=> B , M thẳng hàng (2)

Từ (1) và (2) => B , M , N thẳng hàng 

tth_new
21 tháng 7 2019 lúc 9:03

A, nghĩ ra rồi nè:) (đúng hay không là chuyện khác:v)

Bỏ cái dòng "Thật vậy, từ N hạ NF vuông góc với BC, hạ NG vuông góc với AB" đi nha, thừa thãi không cần thiết => gây khó bài toán.

d)Ta sẽ chứng minh \(\Delta NHM=\Delta NKM;\Delta MHD=\Delta MKA\)

Xét  \(\Delta\) NHM và \(\Delta\) NKM  có:

^NKM = ^NHM = 90o

NM là cạnh chung đồng thời là cạnh huyền

^NMK = ^NMH (chứng minh trên câu c: MN là tia phân giác góc HMK)

Suy ra   \(\Delta\) NHM = \(\Delta\) NKM  (cạnh huyền - góc nhọn)

Suy ra NK = NH (1) và MK = MH (2)

Xét \(\Delta\)MHD và \(\Delta\) MKA có:

MK = MH (chứng minh ở (2))

^KMA = ^HMD (đối đỉnh)

MA = MD (do tam giác DBM = tam giác ABM ,đã chứng minh ở câu a)

Suy ra  \(\Delta\)MHD = \(\Delta\) MKA  (c.g.c)  (nếu ko thì bạn có thể chứng minh theo trường hợp cạnh huyền góc nhọn cũng ra nhé)

Suy ra KA = HD (3)

Từ (1) và (3) suy ra KA + NK = HD + MH tức là AN = ND.

Tới đây dễ dàng chứng minh được \(\Delta NDB=\Delta NAB\left(c.c.c\right)\Rightarrow\widehat{NBD}=\widehat{NBA}\) suy ra BN là tia phân giác góc B.

Kết hợp với BM là tia phân giác góc B (giả thiết) ta có đpcm.

HUNG
Xem chi tiết
Điền Nguyễn Vy Anh
Xem chi tiết
Nguyễn Lê Phước Thịnh
5 tháng 7 2022 lúc 13:54

a: EC=12cm

b: Xét ΔABD vuông tại D và ΔaCE vuông tại E có

BA=CA
góc BAD chung

Do đó: ΔABD=ΔACE

Suy ra: BD=CE

c: Xét ΔIBE vuông tại E và ΔICD vuông tại D có

EB=DC

góc IBE=góc ICD

Do đó: ΔIBE=ΔICD

d: Ta có: AB=AC
nên A nằm trên đường trung trực của BC(1)

Ta co: IB=IC

nên I nằm trên đường trung trực của BC(2)

Ta có MB=MC

nen M nằm trên đường trung trực của BC(3)

Từ (1), (2) và (3) suy ra A,I,M thẳng hàng

Lê Thiện Nhân
Xem chi tiết
nước mắt cứ rơi vì nỗi n...
1 tháng 6 2016 lúc 12:21

xin lỗi mk mới hok lớp 5

đạt trần tiến
1 tháng 6 2016 lúc 14:33

còn mình mới học lớp 4

dcm
Xem chi tiết
Edogawa Conan
19 tháng 7 2019 lúc 10:05

1a) f(-1/2) = 4.(-1/2)2 + 3.(-1/2) - 2 = 4.1/4 - 3/2  - 2 = 1 - 3/2 - 2 = -5/2

b) Ta có: f(x)+ g(x) - h(x) = 0

=> (4x2 + 3x - 2) + (2x2 + 1) - (5x2 - 3x - 1) = 0

=> 4x2 + 3x - 2 + 2x2 + 1 - 5x2 + 3x + 1 = 0

=> (4x2 + 2x2 - 5x2) + (3x + 3x) - (2 - 1 - 1) = 0

=> x2 + 6x = 0

=> x(x + 6) = 0

=> \(\orbr{\begin{cases}x=0\\x+6=0\end{cases}}\)

=> \(\orbr{\begin{cases}x=0\\x=-6\end{cases}}\)

Vậy ...

c) Ta có: 2x2 \(\ge\)\(\forall\)x => 2x2 + 1 \(\ge\)\(\forall\)x

=> 2x2 + 1 \(\ne\)0

=> đa thức g(x) = 2x2 + 1 vô nghiệm

Nguyễn Thị Anh Thư
Xem chi tiết
Nguyễn Tất Đạt
15 tháng 1 2018 lúc 12:51

A B C I D E H

Xét tam giác CIE và tam giác BID có: IE=ID; IC=IB và ^CIE=^BID (Đối đỉnh)

=> Tam giác CIE = Tam giác BID (c.g.c)

^ICE=^IBD (2 góc tương ứng). Mà ^ICE và ^IBD so le trong

=> CE//BD hay BD//CH. Mà BD vuông góc với AB

=> CH vuông góc với AB (Quan hệ //, vg góc) 

=> Tam giác AHC vuông tại H (đpcm).

thục hà
Xem chi tiết
lehongtho
Xem chi tiết
Phương
Xem chi tiết