Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Trần Ngoc
Xem chi tiết
ILoveMath
27 tháng 10 2021 lúc 15:02

\(a^3+b^3+a^2c+b^2c-abc=a^2\left(a+b+c\right)+bc\left(b-a\right)=bc\left(b-a\right)\)

Ngô Duy Phúc
Xem chi tiết
Thắng Nguyễn
22 tháng 12 2017 lúc 18:30

a=b=c=2 thay vào ra min cái này là tay tui tự gõ ra a=b=c=2 chả có bước nào. còn chi tiết sau nhớ nhắc tui làm :D

Thắng Nguyễn
22 tháng 12 2017 lúc 19:04

Áp dụng BĐT Mincopxki và AM-GM có:

\(T=\sqrt{a^2+\frac{1}{b^2}}+\sqrt{b^2+\frac{1}{c^2}}+\sqrt{c^2+\frac{1}{a^2}}\)

\(\ge\sqrt{\left(a+b+c\right)^2+\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2}\)

\(\ge\sqrt{\left(a+b+c\right)^2+\frac{81}{\left(a+b+c\right)^2}}\)

\(=\sqrt{\frac{81}{\left(a+b+c\right)^2}+\frac{\left(a+b+c\right)^2}{16}+\frac{15\left(a+b+c\right)^2}{16}}\)

\(=\sqrt{2\sqrt{\frac{81}{\left(a+b+c\right)^2}\cdot\frac{\left(a+b+c\right)^2}{16}}+\frac{15\cdot6^2}{16}}\)

\(=\sqrt{2\sqrt{\frac{81}{16}}+\frac{15\cdot6^2}{16}}=\frac{3\sqrt{17}}{2}\)

Khi \(a=b=c=2\)

Nguyễn Khánh Huyền
Xem chi tiết
Nguyễn Phương Uyên
17 tháng 10 2018 lúc 18:18

a, 1 - 2x < 7

=> -2x < 6

=> x < -3

=> x thuộc {-4; -5; -6; ...}

b, \(\left(x-1\right)\left(x-2\right)>0\)

th1 :

\(\hept{\begin{cases}x-1< 0\\x-2< 0\end{cases}\Rightarrow\hept{\begin{cases}x< 1\\x< 2\end{cases}\Rightarrow}x< 1\Rightarrow x\in\left\{0;-1;-2;...\right\}}\)

th2 :

\(\hept{\begin{cases}x-1>0\\x-2>0\end{cases}\Rightarrow\hept{\begin{cases}x>1\\x>2\end{cases}\Rightarrow}x>2\Rightarrow x\in\left\{3;4;5;...\right\}}\)

vậy_

c tương tự b

Tẫn
17 tháng 10 2018 lúc 18:46

\(a.1-2x< 7\Leftrightarrow2x< 7+1=8\Leftrightarrow x< 8:2\Leftrightarrow x< 4\)

Vậy x < 4

\(b.\left(x-1\right)\left(x-2\right)>0\)

\(\Leftrightarrow\orbr{\begin{cases}x-1>0;x-2>0\\x-1< 0;x-2< 0\end{cases}}\)

\(TH1\Leftrightarrow\orbr{\begin{cases}x-1>0\\x-2>0\end{cases}\Leftrightarrow\orbr{\begin{cases}x>0+1=1\\x>0+2=2\end{cases}\Rightarrow x>2}}\)

\(TH2\Leftrightarrow\orbr{\begin{cases}x-1< 0\\x-2< 0\end{cases}\Leftrightarrow\orbr{\begin{cases}x< 0+1=1\\x< 0+2=2\end{cases}\Rightarrow}}x< 2\)

Vậy \(x\ne2\)

Tẫn
17 tháng 10 2018 lúc 18:57

Sửa lại câu a,

\(1-2x< 7\Leftrightarrow2x< 1-7=-6\Leftrightarrow x< -6:2\Leftrightarrow x< -3.\)

c, \(\left(x-2\right)^2\left(x+1\right)\left(x-4\right)< 0\)

\(TH1\hept{\begin{cases}\left(x-2\right)^2< 0\\\left(x+1\right)>0\\\left(x-4\right)>0\end{cases}}\)không xảy ra

\(TH2\hept{\begin{cases}\left(x-2\right)^2>0\\x+1< 0\\x-4>0\end{cases}\Leftrightarrow\hept{\begin{cases}\text{mọi x}\\x< -1\\x>-4\end{cases}}}\Rightarrow-4< x< -1\)

\(TH3\hept{\begin{cases}\left(x-2\right)^2>0\\x+1>0\\x-4< 0\end{cases}\Leftrightarrow\hept{\begin{cases}\text{mọi x}\\x>-1\\x< -4\end{cases}}}\left(loại\right)\)

Vậy -4 < x < -1 hay x thuộc { -2; -3 }

Nguyễn Thương Dii
Xem chi tiết
Tomoe
19 tháng 2 2020 lúc 16:47

a, 21(x - 3) < 0

=> x - 3 < 0

=> x < 3

b, (x^2 + 1)(x + 2) < 0

=> x + 2 < 0

=> x < 2

c, (x + 2)(x - 3) = 0

=> x + 2 = 0 hoặc x - 3 = 0

=> x = - 2 hoặc x = 3

Khách vãng lai đã xóa
Nguyễn Khánh Linh
Xem chi tiết
Nguyễn Thị Nhung
Xem chi tiết

a,    \(\overline{ab,b}\) - \(\overline{c,c}\) = \(\overline{0,a}\)

      (\(\overline{ab,b}\) - \(\overline{c,c}\)\(\times\)10 = \(\overline{0,a}\)

       \(\overline{abb}\) - \(cc\) = \(a\)

      \(a\times\)100 + \(b\)\(\times\)11 - \(c\times\)11 = \(a\) 

      \(a\times\)100 + \(b\times\)11 - \(c\times\)11 - \(a\) = 0

      \(a\times\)99 + \(b\) \(\times\)11 - \(c\times\) 11 = 0

     11\(\times\)(\(a\times\)9 + \(b\) - \(c\)) = 0

            \(a\times\) 9 + \(b\) - \(c\) = 0 

            \(a\times\) 9 = \(c-b\) ⇒ \(c-b\)⋮9 ⇒ \(c\) = \(b\) ; \(c\) - \(b\) = 9; 

          th: \(c\) = \(b\) ⇒ \(a\times\)9 = 0 ⇒ \(a\) = 0 (loại)

         th:  \(c-b=9\) ⇒ \(c=9+b\) ⇒ \(b\) = 0; \(c\) = 9

         \(a\times\) 9 = 9 - 0 = 9 ⇒ \(a\) = 1 

Vậy thay \(a=1;b=0;c=9\) vào biểu thức: \(\overline{ab,b}-\overline{c,c}=\overline{o,a}\) ta được:

10,0 -9,9 = 0,1 

 

           

b, \(\overline{b,a}\) - \(\overline{a,b}\) = 2,7

  (\(\overline{b,a}\) - \(\overline{a,b}\))\(\times\)10 = 2,7 \(\times\) 10

  \(\overline{ba}\) - \(\overline{ab}\) = 27

\(b\times10+a-a\times10-b\) = 27

(\(b\times10\) - \(b\)) - (\(a\) \(\times\) 10 - \(a\)) = 27

(\(b\times10-b\times1\)) - (\(a\times\)10 - \(a\)\(\times\)1) = 27

\(b\)\(\times\)(10 -1) - \(a\) \(\times\)( 10 - 1) =27

\(b\times\) 9 - \(a\times9\) = 27

9\(\times\) (\(b-a\)) = 27

      \(b-a\)   = 27 : 9

     \(b-a\) = 3 ⇒ \(b\) = 3 + \(a\) ≤ 9 ⇒ \(a\) ≤ 9 - 3  = 6

Lập bảng ta có: 

\(a\) 0 1 2 3 4 5 6
\(b\) = \(a+3\) 3 4 5 6 7 8

9

Thay các giá trị của \(a;b\) lần lượt vào biểu thức \(\overline{b,a}-\overline{a,b}\) = 2,7 ta có:

3,0 - 0,3 = 2,7

4,1 - 1,4 = 2,7

5,2 - 2,5 = 2.7

6,3 - 3,6 = 2,7

8,5 - 5,8 = 2,7

9,6 - 6,9 = 2,7 

 

NY
Xem chi tiết
Tamako cute
4 tháng 6 2016 lúc 19:21

Dễ thấy với a,b >0 thì (a+b)/2 ≥ √ab <=> 1/(a+b) ≤ 1/4 (1/a +1/b) 
Áp dụng bất đẳng thức Cauchy ta được 
1/(a+2b+3c)=1/[(a+c)+2(b+c)]≤ 1/4[1/(a+c)+1/2(b+c)] (lại áp dụng tiếp được) 
≤ 1/16a+1/16c+1/32b+1/32c 
=1/16a+1/32b+3/32c 
Trường hợp này dấu "=" xảy ra <=> a+c=2(b+c);a=c;b=c <=> c= 0 mâu thuẩn giả thiết 
Do đó dấu "=" không xảy ra 
Thế thì 1/(a+2b+3c)<1/16a+1/32b+3/32c (1) 
Tương tự 1/( b+2c+3a)<1/16b+1/32c+3/32a (2) 
1/ ( c+2a+3b) < 1/16c+1/32a+3/32b (3) 
Cộng (1)(2)(3) cho ta 
1/( a+2b+3c) + 1/( b+2c+3a) + 1/ ( c+2a+3b) <(1/16+1/32+3/32)(1/a+1/b+1/c) 
=3/16*(ab+bc+ca)abc= 3/16

tk nha mk trả lời đầu tiên đó!!!

Jame Blunt
Xem chi tiết
_ɦყυ_
28 tháng 12 2017 lúc 23:39

S=\(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\)

=>S+3=\(\left(\frac{a}{b+c}+1\right)+\left(\frac{b}{c+a}+1\right)+\left(\frac{c}{a+b}+1\right)\)

=>S+3=\(\frac{a+b+c}{b+c}+\frac{a+b+c}{c+a}+\frac{a+b+c}{a+b}\)

=>S+3=(a+b+c).\(\left(\frac{1}{b+c}+\frac{1}{c+a}+\frac{1}{a+b}\right)\)

Thay a + b + c = 2011 và 1/(a+b) + 1/(b+c) + 1/(c+a) = 1/2010 vào S ta đc:

S+3=2011.1/2010

=>S=2011/2010-3

=>S=\(\frac{-4019}{2010}\)

Vậy S=-4019/2010 với a + b + c = 2011 và 1/(a+b) + 1/(b+c) + 1/(c+a) = 1/2010.

_ɦყυ_
28 tháng 12 2017 lúc 23:20

Dễ cực nhưng tiếc rằng ko có thời gian để làm vì dung dt bất tiện lắm nên mik chỉ nói đc cách làm thôi đc ko? Hay là tí nữa cậu lại đăng lại câu này để mik dùng máy tính làm cho nhanh đc ko?

Nguyễn Xuân Anh
28 tháng 12 2017 lúc 23:21

đặt 
x = a + b 
y = b + c 
z = c + a 
=> a = (x+z-y)/2 
b = (x+y-z)/2 
c = (y+z-x)/2 
(x+y+z) = 2(a+b+c) = 4022
thay vào A, ta được: 
A = a/(b+c)+b/(c+a)+c/(a+b) 
= (x+z-y)/2y + (x+y-z)/2z + (y+z-x)/2x 
=1/2 . [ (x+z-y)/y + (x+y-z)/z + (y+z-x)/x ] 
= 1/2 [ (x+z)/y + ( x+y)/z + (y+z)/x -3 ] 
= 1/2 [ (4022-y)/y + (4022-z)/z + (4022-x)/x -3 ] 
= 1/2 [ 4022( 1/x + 1/y + 1/z) - 6]] 
xét 1/x + 1/y + 1/z = 1/(a+b)+1/(b+c)+1/(c+a)=1/10 
=> A = 1/2 .(4022.1/10 -6) 
= 198,1

có thể sai đó nha!!

trần kim ánh ngọc
Xem chi tiết
Nguyễn Hoàng Minh
9 tháng 11 2021 lúc 22:36

Bạn không nên đăng lại câu hỏi nhé!

1. thực hiện phép tính sau a.( 97-94)30: 328 - 7   b. 44 + 6 x ( 1995 - 1985 ) 2 c. 298 x 598 + 289 x 102 - 700 x 287mn... - Hoc24

Nguyễn Lê Phước Thịnh
9 tháng 11 2021 lúc 22:39

Bài 1: 

a: \(=3^2-7=2\)