(2n -5) chia het cho (n+1)
Tim so tu nhien n sao cho:
a)n+2 chia het cho n-1
b)2n+7 chia het cho n+1
c)2n+1 chia het cho 6-n
d)3n chia het cho 5-2n
e)4n +3 chia het cho 2n+6
a, Tìm n thuộc Z, biết n+2 chia hết cho n-1 - Nguyễn Thủy Tiên
n+5 chia het cho n-1
2n-4 chia het cho n+2
6n+4 chia het cho 2n+1
3-2n Chia het cho n+1
hằng đẳng thức: a^n - b^n = (a-b)[a^(n-1).b + a(n-2).b² +..+ b^(n-1)] = (a-b).p
* 5^2n - 2^n = 25^n - 2^n = (25-2)p = 23p => 5.5^2n - 5.2^n = 5.23.p
=> 5^(2n+1) - 5.2^n = 5.23p chia hết cho 23
* 2^(n+4) + 2^(n+1) = 2^n.2^4 + 2^n.2 = 2^n(2^4 + 2) = 18.2^n = 23.2^n - 5.2^n
Vậy: 5^(2n+1) + 2^(n+4) + 2^(n+1) = 5^(2n+1) - 5.2^n + 23.2^n chia hết cho 23
~Hok tốt`
n + 5 chia hết cho n - 1
=> n - 1 + 6 chia hết cho n - 1
=> 6 chia hết cho n - 1
=> n - 1 thuộc Ư(6)
2n - 4 chia hết chi n + 2
=> 2n + 4 - 8 chia hết cho n + 2
=> 2(n + 2) - 8 chia hết chi n + 2
=> 8 chia hết cho n + 2
a.n-7 chia het cho n-2
b.2n+3chia het cho n-2
c.4n+5 chia het cho n-1
d.4n+5 chia het cho 2n+1
e.2n+2 chia het cho 3n-1
f.3n+1 chia het cho 11-2n
a. n - 7 chia het cho n - 2
=> n - 7 . n - 2 chia het cho n - 2
=> n . ( 7 - 2 ) chiua het cho n - 7
=> 5 chia het cho n - 2
=> n - 2 \(\in\) Ư(5)
Ư(5) = { 1;5}
=> n - 2 \(\in\) 1 ; 5
=> n \(\in\) 3;7
Ta có : 2n + 3 chia hết cho n - 2
<=> 2n - 4 + 7 chia hết cho n - 2
=> 2(n - 2) + 7 chia hết cho n - 2
=> 7 chia hết cho n - 2
=> n - 2 thuộc Ư(7) = {-7;-1;1;7}
Ta có bảng :
n - 2 | -7 | -1 | 1 | 7 |
n | -5 | 1 | 3 | 9 |
Tim so tu nhien n sao cho
(n+2) chia het cho (n+1)
(2n+7) chia het cho (n+1)
3n chia het cho (5 * 24)
(4n+3) chia het cho (2n-6)
(2n+1) chia het cho (6-n)
Bài 1
n + 2 ⋮ n + 1
n + 1 + 1 ⋮ n + 1
1 ⋮ n + 1
n + 1 \(\in\) Ư(1) = {-1; 1}
n \(\in\) {-2; 0}
Vì n \(\in\) N nên n = 0
Vậy n = 0
Bài 2:
2n + 7 ⋮ n + 1
2(n + 1) + 5 ⋮ n + 1
5 ⋮ n + 1
n + 1 \(\in\) Ư(5) = {-5; -1; 1; 5}
n \(\in\) {-6; -2; 0; 4}
Vì n \(\in\) N nên n \(\in\) {0; 4}
Vậy n \(\in\) {0; 4}
Bài 3
3n ⋮ 5.24
n ⋮ 40
n = 40k (k \(\in\) N)
Vậy n = 40k ; k \(\in\) N
bai;51tim so TN n sao cho
a)(n+2)chia het cho (n-1)
b)(2n+7) chia het cho (n+1)
c)(2n+1) chia het cho (6-n)
d)3n chia het cho ( 5-2n)
e)(4n+3) chia het cho (2n+6)
a) (n + 2) chia hết cho (n - 1). \(\left(n\in N\right)\)
\(\Rightarrow\) n - 2 + 4 chia hết cho n - 1
\(\Rightarrow\) 4 chia hết cho n - 1
\(\Rightarrow\) n - 1 \(\in\) Ư(4) = {1; 2; 4;}
\(\Rightarrow\) n \(\in\) {2; 3; 5}
b) (2n + 7) chia hết cho (n + 1). \(\left(n\in N\right)\)
\(\Rightarrow\) 2n + 2 + 5 chia hết cho n + 1
\(\Rightarrow\) 2(n + 1) + 5 chia hết cho n + 1
\(\Rightarrow\) 5 chia hết cho n + 1
\(\Rightarrow\) n + 1 \(\in\) Ư(5) = {1; 5;}
\(\Rightarrow\) n \(\in\) {0; 4}
c) (2n + 1) chia hết cho (6 - n). \(\left(n\in N\right)\)
\(\Rightarrow\) (12 - 2n) - (12 - n) + (2n + 1) chia hết cho 6 - n
\(\Rightarrow\) 2(6 - n) - 12 + n + 2n + 1 chia hết cho 6 - n
\(\Rightarrow\) -12 + 3n + 1 chia hết cho 6 - n
\(\Rightarrow\) 18 - 3n - 12 + 1 chia hết cho 6 - n
\(\Rightarrow\) 3(6 - n) - 12 + 1 chia hết cho 6 - n
\(\Rightarrow\) -11 chia hết cho 6 - n
\(\Rightarrow\) 6 - n \(\in\) Ư(-11) = {-1; 1; -11; 11}
\(\Rightarrow\) Không có số tự nhiên n thỏa mãn
d) 3n chia hết cho (5 - 2n) \(\left(n\in N\right)\)
\(\Rightarrow\) 3n chia hết cho 5 - n - n
\(\Rightarrow\) 15 - 4n - 4n chia hết cho 5 - n - n
\(\Rightarrow\) 3(5 - n - n) chia hết cho 5 - n - n
KL: Theo đề bài, ta có \(\left(n\in N\right)\) sao cho 3n chia hết cho (5 - 2n) và 2n < 5
\(\Rightarrow\) n \(\in\) {0; 1; 2}
e) (4n + 3) chia hết cho (2n + 6) \(\left(n\in N\right)\)
\(\Rightarrow\) (2n + 6) + (2n + 6) - 9 chia hết cho 2n + 6
\(\Rightarrow\) 2(2n + 6) - 9 chia hết cho 2n + 6
\(\Rightarrow\) - 9 chia hết cho 2n + 6
\(\Rightarrow\) 2n + 6 \(\in\) Ư(-9) = {-1; 1; -3; 3; -9; 9}
\(\Rightarrow\) Không có số tự nhiên n thỏa mãn
a) (n + 2) chia hết cho (n - 1). \(\left(n\in N\right)\)
\(\Rightarrow\) n - 2 + 4 chia hết cho n - 1
\(\Rightarrow\) 4 chia hết cho n - 1
\(\Rightarrow\) n - 1 \(\in\) Ư(4) = {1; 2; 4;}
\(\Rightarrow\) n \(\in\) {2; 3; 5}
b) (2n + 7) chia hết cho (n + 1). \(\left(n\in N\right)\)
\(\Rightarrow\) 2n + 2 + 5 chia hết cho n + 1
\(\Rightarrow\) 2(n + 1) + 5 chia hết cho n + 1
\(\Rightarrow\) 5 chia hết cho n + 1
\(\Rightarrow\) n + 1 \(\in\) Ư(5) = {1; 5;}
\(\Rightarrow\) n \(\in\) {0; 4}
c) (2n + 1) chia hết cho (6 - n). \(\left(n\in N\right)\)
\(\Rightarrow\) (12 - 2n) - (12 - n) + (2n + 1) chia hết cho 6 - n
\(\Rightarrow\) 2(6 - n) - 12 + n + 2n + 1 chia hết cho 6 - n
\(\Rightarrow\) -12 + 3n + 1 chia hết cho 6 - n
\(\Rightarrow\) 18 - 3n - 12 + 1 chia hết cho 6 - n
\(\Rightarrow\) 3(6 - n) - 12 + 1 chia hết cho 6 - n
\(\Rightarrow\) -11 chia hết cho 6 - n
\(\Rightarrow\) 6 - n \(\in\) Ư(-11) = {-1; 1; -11; 11}
\(\Rightarrow\) Không có số tự nhiên n thỏa mãn
d) 3n chia hết cho (5 - 2n) \(\left(n\in N\right)\)
\(\Rightarrow\) 3n chia hết cho 5 - n - n
\(\Rightarrow\) 15 - 4n - 4n chia hết cho 5 - n - n
\(\Rightarrow\) 3(5 - n - n) chia hết cho 5 - n - n
KL: Theo đề bài, ta có \(\left(n\in N\right)\) sao cho 3n chia hết cho (5 - 2n) và 2n < 5
\(\Rightarrow\) n \(\in\) {0; 1; 2}
e) (4n + 3) chia hết cho (2n + 6) \(\left(n\in N\right)\)
\(\Rightarrow\) (2n + 6) + (2n + 6) - 9 chia hết cho 2n + 6
\(\Rightarrow\) 2(2n + 6) - 9 chia hết cho 2n + 6
\(\Rightarrow\) - 9 chia hết cho 2n + 6
\(\Rightarrow\) 2n + 6 \(\in\) Ư(-9) = {-1; 1; -3; 3; -9; 9}
\(\Rightarrow\) Không có số tự nhiên n thỏa mãn
chịu thôi ! mình không biết ! nếu biết đã giúp rồi
tìm số nguyên n để
a)n+5 chia het cho n-1
b)2n-4 chia het cho n+2
c)6n+4 chia het cho 2n+1
d)3-2n chia het cho n+1
n + 5 \(⋮\)n - 1
=> n - 1 + 6 \(⋮\)n - 1 mà n - 1 \(⋮\)n - 1 => 6 \(⋮\)n - 1
=> n - 1 thuộc Ư ( 6 ) = { - 6 ; - 3 ; - 2 ; - 1 ; 1 ; 2 ;3 ; 6 }
=> n thuộc { - 5 ; - 2 ; - 1 ; 0 ; 2 ; 3 ; 4 ; 7 }
2n-4\(⋮\)n-1
=> (2n-4)-2(n-1)\(⋮\)n-1
=> 2 \(⋮\)n-1
=> n-1 là 1 ước của 2( ước 2 là:1;2;-1;-2)
=>n\(\in\)\(\left\{2;3;0;-1\right\}\)
Vậy.....
tim so nguyen n
a)n+7 chia het cho n +2
b) 9-n chia het cho n-3
c)n^2 +n+17 chia het cho n +1
d) n ^ 2 +25 chia het cho n+2
e) 2n+7 chia het cho n+1
g)3n ^2 +5 chia het cho n -1
h) 3n+7 chia het cho 2n+1
i)2n^2 +11 chia het cho 3n+1
giup minh nha mai minh phai nop roi
a.n + 7 chia hết cho n+2
=> n + 2 + 5 chia hết cho n+2
=> 5 chia hết cho n+2
=> n + 2 thuộc tập hợp các số : 5;-5;1;-1
=> n thuộc tập hợp các số : 3;-7;-1;-3
b.9-n chia hết cho n-3
=> 6 - n - 3 chia hết cho n-3
=> 6 chia hết cho n-3
=> n -3 thuộc tập hợp các số : 1;-1;6;-6
=> n thuộc tập hợp các sô : 4;2;9;-3
Giải hết ra dài lắm
k mk nha
Tim n biet :
a,. n - 7 chia het cho 2n
b , n+5 chia het cho 3n+1
c,n-1 chia het cho 2n-3
a, n-7 chia hết cho 2n
=> 2(n-7) chia hết cho 2n
mà 2n chia hết cho 2n nên
2(2n-7)-2n chia hết cho 2n
=> 2n-14 -2n chia hết cho 2n
=> -14 chia hết cho 2n
vậy 2n thuộc ước của 14
=> 2n=1,2,7,14
=>n= 1/2,1,7/2,7
chung minh
a.n+7CHIA HET CHO n-2
b.2n+3 chia het cho n-2
c.4n+5 chia het cho n-1
d.4n+5 chia het cho2n+1
e.2n+7chia het cho 3n-1
f.3n+1chia het cho11-2n
giải giúp em nhé
n+7 chia het n-2
suy ra (n-2)+9 chia het n-2
suy ra 9 chia het n-2
suy ra n-2 \(\in\) Ư(9)={1;3;9} nếu bạn chưa học số âm
suy ra n-2 \(\in\) Ư(9)={1;3;9;-1;-3;-9} nếu bạn học số âm rồi
n-2=1 n-2=3 n-2=9
n =1+2 n =3+2 n =9+2
n = 3 n =5 n =11 nếu bạn học số âm rồi thì làm tiếp theo cách này còn nếu chưa thì đến đây là hết
Tim n thuoc N
a) n+5 chia het cho n
b) 3n+13 chia het cho n
c) 27-5n chia het cho n
d) 2n+3 chia het cho n-2
e) 3n+1 chia het cho 11-2n
a) vi n chia het cho n nen n+5 chia het cho n khi 5 chia het cho n
do do n thuoc U(5)={1;5}
vay n=1 hoac n=5
xin loi nhe tu tu roi minh giai tiep nhe