tìm GTNN của biểu thức : A= giá trị tuyệt đối của (x+2)+ giá trị tuyệt đối của (x-3)
Tìm GTNN của biểu thức A=giá trị tuyệt đối của x-102 rồi cộng cho giá trị tuyệt đối của 2-x
A=|x-102|+|2-x|\(\ge\)|x-102+2-x|=|-100|=100
vậy minA=100 <=>|x-102|=0 hoặc |2-x|=0
<=>x-102=0 hoặc 2-x=0
<=> x=102 hoặc x=2
GTNN của biểu thức A= giá trị tuyệt đối của x-1 cộng giá trị tuyệt đối của x-3 là
\(\left|x-1\right|+\left|x-3\right|=\left|x-1\right|+\left|3-x\right|\ge\left|x-1+3-x\right|=2\)
Dấu "=" xảy ra \(\Leftrightarrow\left(x-1\right)\left(3-x\right)\ge0\Leftrightarrow1\le x\le3\)
Tìm GTNN của biểu thức:
A = 6 .giá trị tuyệt đối của x - 1 + giá trị tuyệt đối của 3x - 2+ 2x
cho a,b thuoc R. chứng minh giá trị tuyệt đối của a+b nhỏ hơn hoặc bằng giá trị tuyệt đối của a cộng giá trị tuyệt đối của b
áp dụng tìm GTNN của B= giá trị tuyệt đối của x-2 cộng giá trị tuyệt đối của x-3
1. tìm giá trị tuyệt đối của biểu thức A=|x+0,3|+2
2. tìm giá trị tuyệt đối của biểu thức B=1/3-|1/4-x|
Cho x+y = 5 tìm giá trị nhỏ nhất của biểu thức A= giá trị tuyệt đối của x +1 + giá trị tuyệt đối của y-2
A = |x + 1| + |y - 2| ≥ |x + 1 + y - 2|
= |x + y - 1|
= |2 - 1|
= 1
Vậy giá trị nhỏ nhất của A là 1
\(A=\left|x+1\right|+\left|y-2\right|\)
\(\Rightarrow A\le x+1+y-2\)
\(A\le x+y-1\)
\(A\le4\)
Vậy giá trị nhỏ nhất biểu thức A là 4.
tìm giá trị nhỏ nhất của biểu thức: A= giá trị tuyệt đối của x + giá trị tuyệt đối của 8-x
Tìm GTNN của M= giá trị tuyệt đối của x-5 cộng giá trị tuyệt đối của x-6 công giá trị tuyệt đối của x+2020
tìm giá trị nhỏ nhất của biểu thức: A = giá trị tuyệt đối của x- 2001 + giá trị tuyệt đối của x - 1.
|x-2001|+|x-1|=|x-2001|+|1-x|
BĐT gttđ:|a+b| > |a+b|
áp dụng:=>|x-2001|+|1-x| > |(x-2001)+(1-x)|=2000
=>Amin=2000
dấu "=" xảy ra<=>(x-2001)(x-1)>0 tức 1<x<2000