Chứng minh là bình phương của 1 đa thức
chứng minh x*(x-2)*(x+a)*(x+2a)+a^4 là bình phương của 1 đa thức.
Đặt \(A=x\left(x-2\right)\left(x+a\right)\left(x+2a\right)\)
\(=x\left(x+a\right)\left(x-a\right)\left(x+2a\right)\)
\(=\left(x^2+ax\right)\left(x^2+ax-2a^2\right)\)
Đặt \(x^2+ax=t\)
\(\Rightarrow A=t\left(t-2a^2\right)\)
\(\Rightarrow\)\(x\left(x-2\right)\left(x+a\right)\left(x+2a\right)+a^4=t\left(t-2a^2\right)+a^4\)
\(=a^4-2a^2t+t^2=\left(a^2-t\right)^2=\left(a^2-x^2-ax\right)^2\)(là bình phương của 1 đa thức)
Chứng minh x(x - a)(x + a)(x + 2a) + a4 là bình phương của 1 đa thức
Chứng minh rằng: x.(x-a)(x+a)(x+2a)+a4 là bình phương của một đa thức
chứng minh
(x-a)(x+a)(x+2a)+a^4 la bình phương của 2 đa thức
\(\left(x-a\right)\left(x+a\right)\left(x+2a\right)+a^4\)
\(=\left(x^2-a^2\right)\left(x+2a\right)+a^4\)
\(=\left(x^3+2ax^2-a^2x+2a^3\right)+a^4\)
Cm x(x-a)(x+a)(x+2a)+a^a là bình phương của một đa thức
chứng minh rằng đa thức x^25+x^2+1 chia hết cho x^2+x+1
tìm số nguyên a để a^4-a^3+2a^2 là số chính phương
(x25-x22)+(x22-x19)+(x19-x16)...+(x4-x) chia hết cho x2+x+1
hay x25-x chia hết cho x2+x+1
mà x2+x+1 chia hết cho x2+x+1
=> x25+x2+1 chia hết cho x2+x+1
2.a2(a2-a+2) là cp
Vì a2 là cp để a2(a2-a+2) là cp <=> a2-a+2 cũng là cp <=> 4(a2-a+2) là cp
Đặt 4(a2-a+2)=k2 (k tự nhiên)
<=> (2a-1)2+7=k
<=>7=(k-2a+1)(k+2a-1)=7.1=1.7=-1.(-7)=-7.(-1)
Kẻ bảng tự tìm nốt giá trị của a nhé
mong các pn trả lời giúp mik. mik sẽ tick cho các pn
1.Xác định hệ số a ,b để đa thức \(A=x^4-2x^3+3x^2+ax+b\)là bình phương của 1 đa thức
2.CMR biểu thức \(P=x\left(x+a\right)\left(x-a\right)\left(x+2a\right)+a^4\)là bình phương của một đa thức
chứng minh rằng x(x-a)(x+a)(x+2a)+a4 là bình phương của một đa thức
cho a,b,c là đọ dài ba cạnh của một tam giác . chứng minh rằng: A=4a2b2-(a2+b2-c2)2 > 0
Chứng minh: \(x.\left(x-a\right).\left(x+a\right).\left(x+2a\right)+a^4\) là bình phương của 1 đa thức
Đặt \(A=x\left(x-a\right)\left(x+a\right)\left(x+2a\right)+a^4\)
\(=x\left(x+a\right)\left(x-a\right)\left(x+2a\right)+a^4\)
\(=\left(x^2+ax\right)\left(x^2+ax-2a^2\right)+a^4\)
\(=\left(x^2+ax\right)^2-2a^2.\left(x^2+ax\right)+\left(a^2\right)^2\)
\(=\left(x^2+ax-a^2\right)^2\) (đpcm)