Cho tam giác ABC cân tại A ,lấy M,N lần lượt là trung điểm của AB,AC.Chứng minh MN//BC,MN=1/2BC
Cho tam giác ABC cân tại A. Gọi M, N lần lượt là trung điểm của AB và AC.
Chứng minh rằng:
a)MN//BC
b)BN=CM
Giúp mik với .Có Vẽ hình nha bạn;)
a: Ta có: \(AM=MB=\dfrac{AB}{2}\)
\(AN=NC=\dfrac{AC}{2}\)
mà AB=AC
nên AM=MB=AN=NC
Xét ΔABC có
\(\dfrac{AM}{MB}=\dfrac{AN}{NC}\)
Do đó: MN//BC
b: Xét ΔABN và ΔACM có
AB=AC
\(\widehat{A}\) chung
BN=CM
Do đó: ΔABN=ΔACM
a)M,N là trung điểm AB,AC
\(\Rightarrow MN\) là đường trung bình
\(\Rightarrow MN//BC\)
b) M là trung điểm \(AB\Rightarrow MB=\dfrac{AB}{2}màAB=AC\)
N_____\(AC\Rightarrow NC=\dfrac{AC}{2}\Rightarrow MB=NC\)
\(BNC=CMB\left(C-g-c\right)\Rightarrow CM=BN\)
Cho tam giác ABC cân tại A .Gọi M,N lần lượt là trung điểm của AB,AC.Chứng minh
a,MN//BC
b,BN=CM
Giúp tớ với
Bài 1: Cho tam giác ABC, gọi M,N lần lượt là trung điểm của AB, AC.
a)Chứng minh MN // BC
b)Gọi D là điểm bất kỳ thuộc cạnh BC ( D khác B,C), AD cắt MN tại I. Chứng
minh I là trung điểm của AD.
Bài 2: Cho tam giác ABC cân tại A, M là trung điểm của BC. Kẻ Mx// AC cắt AB tại E, kẻ My// AB cắt AC tại F. Chứng minh rằng:
1)E,F là trung điểm của AB, AC
2) FE = 1/2 BC
3) ME=MF, AE=FA
Bài 1 : a) M là trung điểm AB
N là trung điểm AC
suy ra : MN là Đường trung bình của tam giác ABC
suy ra : MN // BC ; MN = BC/2
b) Ta có : MN // BC và M là trung điểm AB
Mà AD cắt MN tại I nên từ đó suy ra : I là trung điểm của cạnh AD
em chỉ giải được bài 1 thôi nên thông cảm ạ
Cho tam giác ABC cân tại A. Gọi M, N lần lượt là trung điểm của AB, AC.
a) Chứng minh MN là đường trung bình của tam giác ABC.
b) Chứng minh tứ giác MNCB là hình thang cân.
c) Cho BC = 6cm. Tính MN.
a: Xét ΔABC có
M là trung điểm của AB
N là trung điểm của AC
Do đó: MN là đường trung bình của ΔBAC
Suy ra: MN//BC
b: Xét tứ giác BMNC có MN//BC
nên BMNC là hình thang
mà \(\widehat{B}=\widehat{C}\)
nên BMNC là hình thang cân
Bài 2. Cho tam giác ABC vuông tại A. Một đường thẳng song song với BC cắt hai cạnh AB và
AC lần lượt tại D và E. Gọi M và N lần lượt là trung điểm của DE và BC. Chứng minh rằng:
a) Ba điểm A, M, N thẳng hàng;
b) MN =
2
BC DE
Bài 3. Cho tam giác ABC vuông tại A, đường cao AH. Vẽ HE AB; HF AC. Từ A vẽ một
đường thẳng vuông góc với EF cắt BC tại M. Chứng minh rằng M là trung điểm của BC.
3:
Xét tứ giác AEHF có
góc AEH=góc AFH=góc EAF=90 độ
=>AEHF là hình chữ nhật
AM vuông góc EF
=>góc MAC+góc AFE=90 độ
=>góc MAC+góc AHE=90 độ
=>góc MAC+góc B=90 độ
mà góc MCA+góc B=90 độ
nên góc MAC=góc MCA
=>MA=MC
góc MAC+góc MAB=90 độ
góc MCA+góc MBA=90 độ
mà góc MAC=góc MCA
nên góc MAB=góc MBA
=>MA=MB
=>MB=MC
=>M là trung điểm của BC
Cho tam giác ABC, gọi M ,N lần lượt là trung điểm của cạnh AB,AC.CMR: MN//BC và MN=1/2BC
cho tam giác ABC cân tại A gọi M và N lần lượt là trung điểm của BC và AC.biết AB=20cm. a)tính MN b)gọi D là điểm đối xứng của A qua M.cm ABDC là hình thoi C)lấy E đối xứng với M qua N.Gọi I là trung điểm của MC.cm I,E,D thẳng hàng D)kẻ EH vuông góc với AC tại H,trên tia dối của EH lấy F sao cho EF=AC.chứng minh góc AMF =45 độ
Cho tam giác ABC ,trên tia đối của tia BA,CA lần lượt lấy hai điểm P,Q sao cho BP=CQ. Gọi M,N lần lượt là trung điểm của BC,PQ.Đường thẳng MN cắt AB,AC lần lượt tại B' , C' . Chứng minh tam giác B'AC' cân
cho tam giác ABC. Gọi M,N lần lượt là trung điểm của các cạnh AB, AC. CMR: MN//BC, MN=1/2BC
Xét ΔABC có
M là trung điểm của AB
N là trung điểm của AC
Do đó: MN là đường trung bình
=>MN//BC và MN=1/2BC