Cho A= 2.3.5.7...Pn là tích của n số nguyên tố đầu tiên (n > 1) chứng minh 2 số A-1 ; A+1 ko có số nào là số chính phương
Cho A= 2.3.5.7...Pn là tích của n số nguyên tố đầu tiên (n > 1) chứng minh 2 số A-1 ; A+1 ko có số nào là số chính phương
Vì A chẵn nên A+1 lẻ => m2 lẻ => m lẻ.
Đặt m = 2k+1 (k∈N).
Ta có m2 = =(2k+1)2=4k2 + 4k + 1
=> A+1 = 4k2 + 4k + 1
=> A = 4k2 + 4k = 4k(k+1) chia hết cho 4. Mâu thuẫn với (*)
Vậy A+1 không là số chính phương
Ta có: A = 2.3.5… là số chia hết cho 3 (n>1)=> A-1 có dạng 3x+2. (x\(\in\)N)
Vì không có số chính phương nào có dạng 3x+2 nên A-1 không là số chính phương .
Vậy nếu A là tích n số nguyên tố đầu tiên (n>1) thì A-1 và A+1 không là số chính phương (đpcm)
Nên viết rõ ràng hơn đi, như cái chỗ Pn là J?
Cho A= 2.3.5.7. ... .Pn là tích của n số nguyên tố đầu tiên (n>1). Chứng minh rằng:Trong ba số A-1; A;A+1 không có số nào là số chính phương.
Cho p= 2.3.5.7.....n là tích n số nguyên tố đầu tiên
Chứng minh p+1 và p-1 không là số chính phương
Vì p là tích của n số nguyên tố đầu tiên nên p \(⋮\) 2 và p \(⋮̸\) (*)
Ta chứng minh p+1 là số chính phương :
Giả sử phản chứng p+1 là số chính phương . Đặt p+1 = m2 ( m \(\in\) N )
Vì p chẵn nên p+1 lẻ => m2 lẻ => m lẻ
Đặt m = 2k+1 ( k \(\in\) N ) .
Ta có m2 = 4k2 + 4k + 1 => p+1 = 4k2 + 4k + 1
=> p = 4k2 + 4k = 4k( k + 1 ) \(⋮\)4 . Mâu thuẫn với (*)
Vậy giả sử phản chứng là sai tức p+1 là số chính phương .
Ta chứng minh p-1 là số chính phương .
Ta có : p = 2.3.5.7.... là số \(⋮\)3 => p-1 có dạng 3k+2
Vì không có số chính phương nào có dang 3k+2 nên p-1 không là số chính phương .
Vậy nếu p là tích n số nguyên tố đầu tiên thì p-1 và p+1 không là số chính phương => ( đpcm )
cho A là tích của n số nguyên tố đầu tiên (n>1) . chứng minh A+1 ko là số chính phương
ai tick đến 190 thì mik tick cho cả đời
Cho số tự nhiên n lớn hơn hoặc bằng 2. gọi p1, p2, ... ,pn là những số nguyên tố sao cho pn nhỏ hơn hoặc bằng n + 1. đặt A = p1 . p2 . ... . pn. Chứng minh rằng trong dãy số các số nguyên tố liên tiếp A + 2, A +3, ... , A + (n + 1) không chứa 1 số nguyên tố nào
I. Nội qui tham gia "Giúp tôi giải toán"
1. Không đưa câu hỏi linh tinh lên diễn đàn, chỉ đưa các bài mà mình không giải được hoặc các câu hỏi hay lên diễn đàn;
2. Không trả lời linh tinh, không phù hợp với nội dung câu hỏi trên diễn đàn.
3. Không "Đúng" vào các câu trả lời linh tinh nhằm gian lận điểm hỏi đáp.
Các bạn vi phạm 3 điều trên sẽ bị giáo viên của Online Math trừ hết điểm hỏi đáp, có thể bị khóa tài khoản hoặc bị cấm vĩnh viễn không đăng nhập vào trang web.
Chứng minh rằng nếu p là tích của n số nguyên tố đầu tiên thì p - 1 và p + 1 không
thể là những số chính phương (với n ≥2).
cho M = P1.P2.P3…Pn là tích của n số nguyên tố đầu tiên (n>1) . Hỏi p-1 có phải số chính phương không
Tham khao:
Vì p là tích của n số nguyên tố đầu tiên nên p chia hết cho 2 và p không chia hết cho 4 (*)
Ta chứng minh p+1 là số chính phương:
Giả sử phản chứng p+1 là số chính phương . Đặt p+1 = m² (m∈N)
Vì p chẵn nên p+1 lẻ => m² lẻ => m lẻ.
Đặt m = 2k+1 (k∈N). Ta có m² = 4k² + 4k + 1 => p+1 = 4k² + 4k + 1 => p = 4k² + 4k = 4k(k+1) chia hết cho 4. Mâu thuẫn với (*)
Vậy giả sử phản chứng là sai, tức là p+1 là số chính phương
Ta chứng minh p-1 là số chính phương:
Ta có: p = 2.3.5… là số chia hết cho 3 => p-1 có dạng 3k+2.
Vì không có số chính phương nào có dạng 3k+2 nên p-1 không là số chính phương .
Vậy nếu p là tích n số nguyên tố đầu tiên thì p-1 và p+1 không là số chính phương (đpcm)
Làm j mak dài vậy mem.Tôi có cách khác:))
Nhận xét:Một số chính phương khi chia cho 4 thì có các số dư là 0 hoặc 1.
Từ giả thiết suy ra M chia hết cho 2 và 3 nhưng không chia hết cho 4
Như vậy vì M chia hết cho 3 nên M-1 chia 3 dư 2 suy ra M-1 không là số chính phương.
Chứng minh rằng : nếu p là tích của n số nguyên tố đầu tiên thì p-1 và p+2 không thể là số chính phương.
Chứng minh rằng nếu p là tích của n số nguyên tố đầu tiên thì p,p-1,p+1 không là số chính phương