Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Thị My
Xem chi tiết
Nguyễn Hoàng Minh
22 tháng 9 2021 lúc 14:09

\(a^3+b^3+abc\ge ab\left(a+b+c\right)\\ \Leftrightarrow a^3+b^3+abc-ab\left(a+b+c\right)\ge0\\ \Leftrightarrow a^3+b^3+ab\left(c-a-b-c\right)\ge0\\ \Leftrightarrow a^3+b^3-ab\left(a+b\right)\ge0\\ \Leftrightarrow\left(a+b\right)\left(a^2-ab+b^2\right)-ab\left(a+b\right)\ge0\\ \Leftrightarrow\left(a+b\right)\left(a^2-2ab+b^2\right)\ge0\\ \Leftrightarrow\left(a+b\right)\left(a-b\right)^2\ge0\left(luôn.đúng\right)\)

 

Nguyễn Hoàng Minh
22 tháng 9 2021 lúc 14:09

Dấu \("="\Leftrightarrow a=b\)

Phạm Mỹ Hạnh
Xem chi tiết
Nguyễn Lê Phước Thịnh
6 tháng 1 2022 lúc 10:47

a: \(\Leftrightarrow\left(a+1\right)^2-4a\ge0\)

hay \(\left(a-1\right)^2>=0\)(luôn đúng)

b: \(VT=a^2c^2+2abcd+b^2d^2+a^2d^2-2abcd+b^2c^2\)

\(=a^2\left(c^2+d^2\right)+b^2\left(c^2+d^2\right)\)

\(=\left(c^2+d^2\right)\left(a^2+b^2\right)=VP\)

chuche
Xem chi tiết
Nguyễn Hoàng Minh
31 tháng 10 2021 lúc 18:12

Câu 9:

\(a,\left(a+1\right)^2\ge4a\\ \Leftrightarrow a^2+2a+1\ge4a\\ \Leftrightarrow a^2-2a+1\ge0\\ \Leftrightarrow\left(a-1\right)^2\ge0\left(luôn.đúng\right)\)

Dấu \("="\Leftrightarrow a=1\)

\(b,\) Áp dụng BĐT cosi: \(\left(a+1\right)\left(b+1\right)\left(c+1\right)\ge2\sqrt{a}\cdot2\sqrt{b}\cdot2\sqrt{c}=8\sqrt{abc}=8\)

Dấu \("="\Leftrightarrow a=b=c=1\)

Câu 10:

\(a,\left(a+b\right)^2\le2\left(a^2+b^2\right)\\ \Leftrightarrow a^2+2ab+b^2\le2a^2+2b^2\\ \Leftrightarrow a^2-2ab+b^2\ge0\\ \Leftrightarrow\left(a-b\right)^2\ge0\left(luôn.đúng\right)\)

Dấu \("="\Leftrightarrow a=b\)

\(b,\Leftrightarrow a^2+b^2+c^2+2ab+2bc+2ac\le3a^2+3b^2+3c^2\\ \Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\left(luôn.đúng\right)\)

Dấu \("="\Leftrightarrow a=b=c\)

Câu 13:

\(M=\left(a^2+ab+\dfrac{1}{4}b^2\right)-3\left(a+\dfrac{1}{2}b\right)+\dfrac{3}{4}b^2-\dfrac{3}{2}b+2021\\ M=\left[\left(a+\dfrac{1}{2}b\right)^2-2\cdot\dfrac{3}{2}\left(a+\dfrac{1}{2}b\right)+\dfrac{9}{4}\right]+\dfrac{3}{4}\left(b^2-2b+1\right)+2018\\ M=\left(a+\dfrac{1}{2}b-\dfrac{3}{2}\right)^2+\dfrac{3}{4}\left(b-1\right)^2+2018\ge2018\\ M_{min}=2018\Leftrightarrow\left\{{}\begin{matrix}a+\dfrac{1}{2}b=\dfrac{3}{2}\\b=1\end{matrix}\right.\Leftrightarrow a=b=1\)

Akai Haruma
31 tháng 10 2021 lúc 20:30

Câu 6:

$2=(a+b)(a^2-ab+b^2)>0$

$\Rightarrow a+b>0$

$4(a^3+b^3)-N^3=4(a^3+b^3)-(a+b)^3$

$=3(a^3+b^3)-3ab(a+b)=(a+b)(a-b)^2\geq 0$
$\Rightarrow N^3\leq 4(a^3+b^3)=8$

$\Rightarrow N\leq 2$

Vậy $N_{\max}=2$

Akai Haruma
31 tháng 10 2021 lúc 20:32

Câu 7:

BĐT $\Leftrightarrow a^3+b^3\geq ab(a+b)$

$\Leftrightarrow a^3+b^3-ab(a+b)\geq 0$

$\Leftrightarrow (a-b)^2(a+b)\geq 0$ (luôn đúng với mọi $a,b,c>0$)

Vậy ta có đpcm

Dấu "=" xảy ra khi $a=b>0$, $c$ dương bất kỳ. 

chuche
Xem chi tiết
Nguyễn Hoàng Minh
31 tháng 10 2021 lúc 15:39

\(5,M=a^3+b^3=\left(a+b\right)\left(a^2-ab+b^2\right)\\ M=\left(a+b\right)\left[\left(a+b\right)^2-3ab\right]\\ M=1\left(1-3ab\right)=1-3ab\ge1-\dfrac{3\left(a+b\right)^2}{4}=1-\dfrac{3}{4}=\dfrac{1}{4}\\ M_{min}=\dfrac{1}{4}\Leftrightarrow a=b=\dfrac{1}{2}\)

 

anh pro
Xem chi tiết
Lấp La Lấp Lánh
4 tháng 11 2021 lúc 13:05

Câu 5:

\(a+b=1\Rightarrow a=1-b\)

\(M=a^3+b^3=\left(1-b\right)^3+b^3=1-3b+3b^2-b^3+b^3\)

\(=1-3b+3b^2=3\left(b^2-b+\dfrac{1}{4}\right)+\dfrac{1}{4}=3\left(b-\dfrac{1}{2}\right)^2+\dfrac{1}{4}\ge\dfrac{1}{4}\)

\(minM=\dfrac{1}{4}\Leftrightarrow a=b=\dfrac{1}{2}\)

Lấp La Lấp Lánh
4 tháng 11 2021 lúc 13:21

Câu 7:

\(a^3+b^3+abc\ge ab\left(a+b+c\right)\)

\(\Leftrightarrow a^3+b^3+abc-ab\left(a+b+c\right)\ge0\)

\(\Leftrightarrow a^3+b^3-a^2b-ab^2\ge0\)

\(\Leftrightarrow a^2\left(a-b\right)-b^2\left(a-b\right)\ge0\)

\(\Leftrightarrow\left(a-b\right)\left(a^2-b^2\right)\ge0\Leftrightarrow\left(a-b\right)^2\left(a+b\right)\ge0\)(đúng do a,b dương)

Dấu "=" xảy ra \(\Leftrightarrow a=b\)

hoàng bảo nam
Xem chi tiết
hoàng bảo nam
8 tháng 4 2022 lúc 13:12

giúp mình vs

Nguyễn Việt Lâm
8 tháng 4 2022 lúc 13:50

5.

Với mọi a;b ta có: \(\left(a-b\right)^2\ge0\Rightarrow a^2+b^2\ge2ab\Rightarrow2a^2+2b^2\ge a^2+b^2+2ab\)

\(\Rightarrow2\left(a^2+b^2\right)\ge\left(a+b\right)^2\Rightarrow a^2+b^2\ge\dfrac{1}{2}\left(a+b\right)^2=\dfrac{1}{2}\)

\(M=a^3+b^3=\left(a+b\right)\left(a^2+b^2-ab\right)=a^2+b^2-ab\)

\(M=\dfrac{3}{2}\left(a^2+b^2\right)-\dfrac{1}{2}\left(a+b\right)^2=\dfrac{3}{2}\left(a^2+b^2\right)-\dfrac{1}{2}\ge\dfrac{3}{2}.\dfrac{1}{2}-\dfrac{1}{2}=\dfrac{1}{4}\)

\(M_{min}=\dfrac{1}{4}\) khi \(a=b=\dfrac{1}{2}\)

6.

Do \(a^3+b^3=\left(a+b\right)\left(a^2-ab+b^2\right)=2>0\)

Mà \(a^2-ab+b^2>0\Rightarrow a+b>0\)

Mặt khác với mọi a;b ta có:

\(\left(a-b\right)^2\ge0\Rightarrow a^2+b^2\ge2ab\Rightarrow a^2+b^2+2ab\ge4ab\)

\(\Rightarrow\left(a+b\right)^2\ge4ab\Rightarrow ab\le\dfrac{1}{4}\left(a+b\right)^2\) \(\Rightarrow-ab\ge-\dfrac{1}{4}\left(a+b\right)^2\)

Từ đó:

\(2=a^3+b^3=\left(a+b\right)^3-3ab\left(a+b\right)\ge\left(a+b\right)^3-3.\dfrac{1}{4}\left(a+b\right)^2\left(a+b\right)=\dfrac{1}{4}\left(a+b\right)^3\)

\(\Rightarrow\left(a+b\right)^3\le8\Rightarrow a+b\le2\)

\(N_{max}=2\) khi \(a=b=1\)

Nguyễn Việt Lâm
8 tháng 4 2022 lúc 13:52

7.

Ta có:

\(a^3+b^3+abc=\left(a+b\right)\left(a^2+b^2-ab\right)+abc\ge\left(a+b\right)\left(2ab-ab\right)+abc\)

\(\Rightarrow a^3+b^3+abc\ge ab\left(a+b\right)+abc=ab\left(a+b+c\right)\) (đpcm)

Dấu "=" xảy ra khi \(a=b\)

8.

\(\left|a+b\right|>\left|a-b\right|\Leftrightarrow\left(a+b\right)^2>\left(a-b\right)^2\)

\(\Leftrightarrow a^2+2ab+b^2>a^2-2ab+b^2\)

\(\Leftrightarrow4ab>0\Leftrightarrow ab>0\)

\(\Rightarrow a;b\) cùng dấu

SANS:))$$^
Xem chi tiết
Khổng Nguyễn Ngân Dương
25 tháng 2 2022 lúc 18:40

ấn vào ô báo cáo

Khách vãng lai đã xóa
Phan Tuấn Anh
25 tháng 2 2022 lúc 22:31

Tối quá, ko thấy bài đâu 

HT

Khách vãng lai đã xóa
Kuruishagi zero
Xem chi tiết
Kuruishagi zero
7 tháng 12 2018 lúc 23:02

5. Ta có b = 1 – a, do đó M = a\(^3\) + (1 – a)\(^3\) = 3(a – 1⁄2)2 + 1⁄4 ≥ 1⁄4 . Dấu “=” xảy ra khi a = 1⁄2 .
Vậy min M = 1⁄4 => a = b = 1⁄2 .
6. Đặt a = 1 + x => b 3 = 2 – a\(^3\) = 2 – (1 + x)\(^3\) = 1 – 3x – 3x\(^2\)– x\(^3\) ≤ 1 – 3x + 3x\(^2\)– x\(^3\) = (1 – x)\(^3\)
Suy ra : b ≤ 1 – x. Ta lại có a = 1 + x, nên : a + b ≤ 1 + x + 1 – x = 2.
Với a = 1, b = 1 thì a\(^3\) + b\(^3\) = 2 và a + b = 2. Vậy max N = 2 khi a = b = 1.
7. Hiệu của vế trái và vế phải bằng (a – b)\(^2\)(a + b).

Nguyễn Bá Hào
Xem chi tiết