giải pt \(2x+3+\sqrt{9x^2+8x+2}=2\sqrt{x+2}+\sqrt{4x+1}\)
Giải pt
\(1)4x^2+\sqrt{3x+1}+5=13x\)
\(2)7x^2-13x+8=2x^2.\sqrt[3]{x\left(1+3x-3x^2\right)}\)
\(3)x^3-4x^2-5x+6=\sqrt[3]{7x^2+9x-4}\)
\(4)x^3-5x^2+4x-5=\left(1-2x\right)\sqrt[3]{6x^2-2x+7}\)
\(5)8x^2-13x+7=\left(1+\dfrac{1}{x}\right)\sqrt[3]{3x^2-2}\)
Để giải các phương trình này, chúng ta sẽ làm từng bước như sau: 1. 13x(7-x) = 26: Mở ngoặc và rút gọn: 91x - 13x^2 = 26 Chuyển về dạng bậc hai: 13x^2 - 91x + 26 = 0 Giải phương trình bậc hai này để tìm giá trị của x. 2. (4x-18)/3 = 2: Nhân cả hai vế của phương trình với 3 để loại bỏ mẫu số: 4x - 18 = 6 Cộng thêm 18 vào cả hai vế: 4x = 24 Chia cả hai vế cho 4: x = 6 3. 2xx + 98x2022 = 98x2023: Rút gọn các thành phần: 2x^2 + 98x^2022 = 98x^2023 Chia cả hai vế cho 2x^2022: x + 49 = 49x Chuyển các thành phần chứa x về cùng một vế: 49x - x = 49 Rút gọn: 48x = 49 Chia cả hai vế cho 48: x = 49/48 4. (x+1) + (x+3) + (x+5) + ... + (x+101): Đây là một dãy số hình học có công sai d = 2 (do mỗi số tiếp theo cách nhau 2 đơn vị). Số phần tử trong dãy là n = 101/2 + 1 = 51. Áp dụng công thức tổng của dãy số hình học: S = (n/2)(a + l), trong đó a là số đầu tiên, l là số cuối cùng. S = (51/2)(x + (x + 2(51-1))) = (51/2)(x + (x + 100)) = (51/2)(2x + 100) = 51(x + 50) Vậy, kết quả của các phương trình là: 1. x = giá trị tìm được từ phương trình bậc hai. 2. x = 6 3. x = 49/48 4. S = 51(x + 50)
giải pt :
a,\(\left(6x-5\right)\sqrt{x+1}-\left(6x+2\right)\sqrt{x-1}+4\sqrt{x^2-1}=4x-3\)
b, \(\left(9x-2\right)\sqrt{3x-1}+\left(10-9x\right)\sqrt{3-3x}-4\sqrt{-9x^2+12x-3}=4\)
c, \(\left(13-4x\right)\sqrt{2x-3}+\left(4x-3\right)\sqrt{5-2x}=2+8\sqrt{-4x^2+16x-15}\)
giải pt :
a, \(3x^2+3x+2=\left(x+6\right)\sqrt{x^2-2x-3}\)
b, \(\sqrt{x}+\sqrt{x+1}=\sqrt{x^2+x}+1\)
c, \(\sqrt{x^2-8x+15}+\sqrt{x^2+2x-15}=\sqrt{x^2-9x+18}\)
c.
ĐKXĐ: \(\left[{}\begin{matrix}x\le-5\\x\ge6\end{matrix}\right.\)
\(\sqrt{\left(x-3\right)\left(x-5\right)}+\sqrt{\left(x-3\right)\left(x+5\right)}=\sqrt{\left(x-3\right)\left(x-6\right)}\)
- Với \(x\ge6\) , do \(x-3>0\) pt trở thành:
\(\sqrt{x-5}+\sqrt{x+5}=\sqrt{x-6}\)
Do \(\left\{{}\begin{matrix}\sqrt{x-5}>\sqrt{x-6}\\\sqrt{x+5}>0\end{matrix}\right.\) \(\Rightarrow\sqrt{x-5}+\sqrt{x+5}>\sqrt{x-6}\) pt vô nghiệm
- Với \(x\le-5\) pt tương đương:
\(\sqrt{\left(3-x\right)\left(5-x\right)}+\sqrt{\left(3-x\right)\left(-x-5\right)}=\sqrt{\left(3-x\right)\left(6-x\right)}\)
Do \(3-x>0\) pt trở thành:
\(\sqrt{5-x}+\sqrt{-x-5}=\sqrt{6-x}\)
\(\Leftrightarrow-2x+2\sqrt{x^2-25}=6-x\)
\(\Leftrightarrow2\sqrt{x^2-25}=x+6\) (\(x\ge-6\))
\(\Leftrightarrow4\left(x^2-25\right)=x^2+12x+36\)
\(\Leftrightarrow3x^2-12x-136=0\Rightarrow x=\dfrac{6-2\sqrt{111}}{3}\)
a.
Kiểm tra lại đề, pt này không giải được
b.
ĐKXĐ: \(x\ge0\)
\(\sqrt{x\left(x+1\right)}-\sqrt{x}+1-\sqrt{x+1}=0\)
\(\Leftrightarrow\sqrt{x}\left(\sqrt{x+1}-1\right)-\left(\sqrt{x+1}-1\right)=0\)
\(\Leftrightarrow\left(\sqrt{x}-1\right)\left(\sqrt{x+1}-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x}=1\\\sqrt{x+1}=1\end{matrix}\right.\)
\(\Leftrightarrow...\)
giải phương trình
a)\(\sqrt{x-1}+\sqrt{4x-4}-\sqrt{25x-25}+2=0\)
b)\(\sqrt{16x+16}-\sqrt{9x+9}+\sqrt{4x+4}+\sqrt{x+1}=16\)
c)\(\sqrt{4x+20}+\sqrt{x+5}-\dfrac{1}{3}\sqrt{9x+45}=4\)
d)\(\dfrac{1}{3}\sqrt{2x}-\sqrt{8x}+\sqrt{18x}-10=2\)
a) \(\sqrt{x-1}+\sqrt{4x-4}-\sqrt{25x-25}+2=0\) (ĐK: \(x\ge1\))
\(\Leftrightarrow\sqrt{x-1}+\sqrt{4\left(x-1\right)}-\sqrt{25\left(x-1\right)}+2=0\)
\(\Leftrightarrow\sqrt{x-1}+2\sqrt{x-1}-5\sqrt{x-1}+2=0\)
\(\Leftrightarrow-2\sqrt{x-1}=-2\)
\(\Leftrightarrow\sqrt{x-1}=\dfrac{2}{2}\)
\(\Leftrightarrow\sqrt{x-1}=1\)
\(\Leftrightarrow x-1=1\)
\(\Leftrightarrow x=2\left(tm\right)\)
b) \(\sqrt{16x+16}-\sqrt{9x+9}+\sqrt{4x+4}+\sqrt{x+1}=16\) (ĐK: \(x\ge-1\))
\(\Leftrightarrow\sqrt{16\left(x+1\right)}-\sqrt{9\left(x+1\right)}+\sqrt{4\left(x+1\right)}+\sqrt{x+1}=16\)
\(\Leftrightarrow4\sqrt{x+1}-3\sqrt{x+1}+2\sqrt{x+1}+\sqrt{x+1}=16\)
\(\Leftrightarrow4\sqrt{x+1}=16\)
\(\Leftrightarrow\sqrt{x+1}=4\)
\(\Leftrightarrow x+1=16\)
\(\Leftrightarrow x=15\left(tm\right)\)
Giải PT: \(\sqrt{x^2+2x}+\sqrt{9x-3}=\sqrt{4x^2+13x+3}\)
ĐKXĐ: \(x\ge\dfrac{1}{3}\)
\(\Leftrightarrow x^2+11x-3+2\sqrt{\left(x^2+2x\right)\left(9x-3\right)}=4x^2+13x+3\)
\(\Leftrightarrow2\sqrt{\left(x^2+2x\right)\left(9x-3\right)}=3x^2+2x+6\)
\(\Leftrightarrow2\sqrt{\left(3x+6\right)\left(3x^2-x\right)}=3x^2+2x+6\)
\(\Leftrightarrow\left(3x^2-x\right)-2\sqrt{\left(3x+6\right)\left(3x^2-x\right)}+3x+6=0\)
\(\Leftrightarrow\left(\sqrt{3x^2-x}-\sqrt{3x+6}\right)^2=0\)
\(\Leftrightarrow3x^2-x=3x+6\)
\(\Leftrightarrow3x^2-4x-6=0\Rightarrow\left[{}\begin{matrix}x=\dfrac{2+\sqrt{22}}{3}\\x=\dfrac{2-\sqrt{22}}{3}\left(loại\right)\end{matrix}\right.\)
Giải pt \(\sqrt{-x^2+4x-3}+\sqrt{-2x^2+8x+1}=x^3-4x^2+4x+4\)
Giải pt
\(2x+3+\sqrt{4x^2+9x+2}=2\sqrt{x+2}+\sqrt{4x+1}\)
ĐKXĐ: \(x\ge-\frac{1}{4}\)
Đặt \(2\sqrt{x+2}+\sqrt{4x+1}=t>0\)
\(\Rightarrow t^2+3=8x+12+4\sqrt{4x^2+9x+2}\)
\(\Rightarrow2x+3+\sqrt{4x^2+9x+2}=\frac{t^2+3}{4}\) (1)
Pt trở thành:
\(\frac{t^2+3}{4}=t\Leftrightarrow t^2-4t+3=0\Rightarrow\left[{}\begin{matrix}t=1\\t=3\end{matrix}\right.\)
Thay vào (1)
\(\Rightarrow\left[{}\begin{matrix}2x+3+\sqrt{4x^2+9x+2}=1\left(2\right)\\2x+3+\sqrt{4x^2+9x+2}=3\left(3\right)\end{matrix}\right.\)
\(\left(1\right)\Leftrightarrow2x+2+\sqrt{4x^2+9x+2}=0\)
Do \(x\ge-\frac{1}{4}\Rightarrow VT\ge2.\left(-\frac{1}{4}\right)+2>0\) nên (1) vô nghiệm
Xét (2): \(\Leftrightarrow\sqrt{4x^2+9x+2}=-2x\) (\(x\le0\))
\(\Leftrightarrow4x^2+9x+2=4x^2\)
\(\Rightarrow x=-\frac{2}{9}\) (thỏa mãn)
Giải pt:
\(x^2-4x+6=\sqrt{2x^2-5x+3}+\sqrt{-3x^2+9x-5}\)
Giải phương trình $x^2-4x+6=\sqrt{2x^2-5x+3}+\sqrt{-3x^2+9x-5}$ - Phương trình - hệ phương trình - bất phương trình - Diễn đàn Toán học
Giải pt : a) \(8x^2-13x+7=\left(1+\frac{1}{x}\right)\sqrt[3]{3x^2-2}\)
b) \(\sqrt{4x^2+5x+1}-2\sqrt{x^2-x+1}=9x-3\)
c) \(2\sqrt{x+1}+6\sqrt{9-x^2}+6\sqrt{\left(x+1\right)\left(9-x^2\right)}=38+10x-2x^2-x^3\)
Vũ Minh Tuấn, Băng Băng 2k6, Hoàng Tử Hà, đề bài khó wá, Lê Gia Bảo, Aki Tsuki, Nguyễn Việt Lâm,
Lê Thị Thục Hiền, Nguyễn Trúc Giang, Học 24h, @tth_new, @Akai Haruma
Help me! Cần gấp
thanks!