Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
phan tuấn anh
Xem chi tiết
Sakura
Xem chi tiết
Phan Vũ Hoàng Anh
23 tháng 2 2022 lúc 10:50

9+10+11=30

Phan Vũ Hoàng Anh
23 tháng 2 2022 lúc 10:57

mình tính ra là 10 cái

Cassie Natalie Nicole
Xem chi tiết
oOo Sát thủ bóng đêm oOo
8 tháng 7 2018 lúc 15:38

x=2,y=2,z=4

êfe
8 tháng 7 2018 lúc 15:45

lời giải

Dinh Tien Linh
Xem chi tiết
Nguyễn Linh Chi
13 tháng 1 2020 lúc 15:00

\(\hept{\begin{cases}x+y=z\left(1\right)\\x^3+y^3=z^2\left(2\right)\end{cases}}\)

Ta thế (1) vào (2) : \(\left(x+y\right)^3-3xy\left(x+y\right)=\left(x+y\right)^2\)

<=> \(\left(x+y\right)^2-3xy=\left(x+y\right)\)

Đặt: \(x+y=S;xy=P\)vì x, y nguyên dương => S; P nguyên dương

ĐK để tồn tại nghiệm x, y là: \(S^2\ge4P\)

Có: \(S^2-3P=S\)

=> \(S+3P\ge4P\)<=> \(S\ge P\)

=> \(S^2-S=3P\le3S\)

<=> \(0\le S\le4\)

+) S = 0 loại

+) S = 1 => P = 0 loại 

+) S = 2 => P =3/2 loại 

+) S = 3 => P = 2

=> \(\hept{\begin{cases}x+y=3\\xy=2\end{cases}}\)<=> x =2; y =1 hoặc x = 1; y =2 

=>  (x; y; z ) = ( 1; 2; 3) thử lại thỏa mãn

 hoặc (x; y; z) = ( 2; 1; 3 ) thử lại thỏa mãn

+) S = 4 => P = 4 

=> \(\hept{\begin{cases}x+y=4\\xy=4\end{cases}\Leftrightarrow}x=y=2\)

=> (x; y; z ) = ( 2; 2; 4) thử lại thỏa mãn.

Vậy: có 3 nghiệm là:....

Khách vãng lai đã xóa
Đặng Nhật Minh
Xem chi tiết
Phạm Tuấn Đạt
6 tháng 11 2019 lúc 22:41

\(x^2+15^y=2^z\)(\(z\ge4\))

Do VT chẵn và 15 lẻ nên x lẻ

Khi đó x có dạng 2k+1(\(k\in N\))

\(\Rightarrow x^2\equiv1\left(mod4\right)\)

TH1:y chẵn \(\Rightarrow15^y\equiv1\left(mod4\right)\)

\(\Rightarrow VT\equiv2\left(mod4\right)\)

\(\Rightarrow2^z\equiv2\left(mod4\right)\).Điều này chỉ xảy ra khi z=1 (nếu z>1 thì 2z chia hết cho 4)

Mà z>=4 => Loại TH này

\(15⋮3\)\(\Rightarrow x^2\equiv2\left(mod3\right)\)(Vô lí)

Vậy y lẻ.

TH2:Với y lẻ thì \(15^y\equiv-1\left(mod4\right)\)mà \(2^z⋮4\)

\(\Rightarrow x^2\equiv-1\left(mod4\right)\)(Vô lí)

Vậy ko có x,y,z là số nguyên dương thỏa mãn

Khách vãng lai đã xóa
Nguyễn Linh Chi
8 tháng 11 2019 lúc 8:53

@ Tuấn Đạt@ Sao lại không có nghiệm thỏa mãn. ??
x = 1; y = 1; z = 4. thỏa mãn mà.

Khách vãng lai đã xóa
╰❥ ครtг๏ภ๏๓เค ✾
17 tháng 5 2020 lúc 21:55

hi mn nha

Khách vãng lai đã xóa
Linh Dieu
Xem chi tiết
Nguyễn Việt Lâm
10 tháng 5 2021 lúc 14:54

ĐKXĐ: \(\left\{{}\begin{matrix}x>0\\3^x-9\ge0\end{matrix}\right.\) \(\Rightarrow x\ge2\)

BPT tương đương:

\(\left[{}\begin{matrix}3^x-9=0\\log_3x-y\le0\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=2\\log_3x\le y\end{matrix}\right.\) 

Do \(x\ge2\) mà ko có quá \(2186\) số nguyên x thỏa mãn \(\Rightarrow x\le2187\)

\(\Rightarrow3^y\le2187\Rightarrow y\le7\)

Có 7 số nguyên dương y thỏa mãn

Mít Sấy
4 tháng 6 2021 lúc 22:54

Mình nghĩ là y<7 chứ ,vậy là có 6 số 

Trương Tùng Dương
Xem chi tiết
Witch Rose
24 tháng 6 2019 lúc 8:52

Áp dụng hđt: \(x^3+y^3+z^3-3xyz=\left(x+y+z\right)\left(x^2+y^2+z^2-xy-yz-xz\right)\)Ta có: \(x^3+y^3+3xyz=z^3\Leftrightarrow x^3+y^3+3xyz-z^3=0\Leftrightarrow\left(x+y-z\right)\left(x^2+y^2+z^2-xy+xz+yz\right)=0\)

Th1: \(x+y-z=0\Leftrightarrow x+y=z\Rightarrow z^3=\left(2x+2y\right)^2=4z^2\Leftrightarrow z=4\)(do z là số nguyen dương)

\(\Rightarrow x+y=4\)\(\Rightarrow\left(x,y\right)\in\left\{\left(1,3\right)\left(2,2\right)\left(3,1\right)\right\}\)

\(TH2:x^2+y^2+z^2-xy+xz+yz=0\Leftrightarrow\frac{\left(x-y\right)^2+\left(x+z\right)^2+\left(y+z\right)^2}{2}=0\)(loại vì x,y,z nguyên dương nên VT>0 )

Vậy...

Quoc Tran Anh Le
Xem chi tiết
HT2k02
14 tháng 4 2023 lúc 18:01

1. Ta chọn $x=3k;y=4k;z=5k$ với $k$ là số nguyên dương.

Khi này $x^2+y^2=25k^2 =z^2$. Tức có vô hạn nghiệm $(x;y;z)=(3k;4k;5k)$ với $k$ là số nguyên dương thỏa mãn

HT2k02
14 tháng 4 2023 lúc 18:03

Câu 2:

Chọn $x=y=2k^3; z=2k^2$ với $k$ nguyên dương.

Khi này $x^2+y^2 =8k^6 = z^3$.

Tức tồn tại vô hạn $(x;y;z)=(2k^3;2k^3;2k^2) $ với $k$ nguyên dương là nghiệm phương trình.

Anh dam ngoc
16 tháng 4 2023 lúc 12:31

Câu 2:

Chọn x=y=2k3;z=2k2 với knguyên dương.

Khi này x2+y2=8k6=z3.

Tức tồn tại vô hạn (x;y;z)=(2k3;2k3;2k2) với k nguyên dương là nghiệm phương trình.

Thái Ngọc Trâm Anh
Xem chi tiết