Tìm các số nguyên x, y thỏa mãn đẳng thức : 2y2x – y2 + x + y + 1 = x2 +xy +y2
Tìm các số nguyênc: x, y thỏa mãn đẳng thức |(x-y)2 +2(xy+y2-4y)|=xy+y2-4y
Tìm tất cả các số nguyên x, y thỏa mãn x2+y2+xy-x-y=1
tìm các cặp số nguyên x, y thỏa mãn: y2(x2-x+1)+xy = 3x-1
Cho x,y là các số thực thuộc (0;1) thỏa mãn (x3+y3)(x+y)xy =(1−x)(1−y).Tìm giá trị lớn nhất của biểu thức P=1√1+x2 +1√1+y2 +4xy−x2−y2
Không nhìn thấy bất cứ chữ nào của đề bài cả
Tìm tất cả các cặp số nguyên dương (xy) thỏa mãn x2+y2-2(x+y) = xy
\(x^2+y^2+2\left(x+y\right)-xy=0\)
\(\Leftrightarrow4x^2-4xy+4y^2+8\left(x+y\right)=0\)
\(\Leftrightarrow\left(2x-y\right)^2+4\left(2x-y\right)+4+3y^2+12y+12=-16\)
\(\Leftrightarrow\left(2x-y+2\right)^2+3\left(y+2\right)^2=-16\)
Dễ thấy VT \(\ge0\) ; VP < 0 nên phương trình vô nghiệm
\(x^2+y^2-2\left(x+y\right)=xy\)
\(\Rightarrow x^2-2x+1+y^2-2y+1=2+xy\)
\(\Rightarrow\left(x-1\right)^2+\left(y-1\right)^2=2+xy\)
Ta lại có : \(\left(x-1\right)^2+\left(y-1\right)^2\ge2\left(x-1\right)\left(y-1\right)\) (Bất đẳng thức Cauchy)
Tiếp tục phần tiếp theo
Dấu bằng xảy ra khi \(\left\{{}\begin{matrix}x=2\\y=2\end{matrix}\right.\)
\(\Rightarrow\left(x-1\right)^2+\left(y-1\right)^2=2+xy\) (vô lý vì 2=2+2.2)
⇒ Không có cặp (x;y) nguyên dương nào thỏa mãn đề bài
Cho x , y là các số thực dương thỏa mãn x + y + xy = 8 . Tìm giá trị nhỏ nhất của biểu thức A = x2 + y2
Ch x,y là các số nguyên thỏa mãn x2 +y2 -x \(⋮\) xy . Chứng minh rằng x là số chính phương
Tìm các số nguyên x, y thỏa mãn x 4 + x 2 − y 2 − y + 20 = 0. (1)
Ta có (1) ⇔ x 4 + x 2 + 20 = y 2 + y
Ta thấy: x 4 + x 2 < x 4 + x 2 + 20 ≤ x 4 + x 2 + 20 + 8 x 2 ⇔ x 2 ( x 2 + 1 ) < y ( y + 1 ) ≤ ( x 2 + 4 ) ( x 2 + 5 )
Vì x, y ∈ Z nên ta xét các trường hợp sau
+ TH1. y ( y + 1 ) = ( x 2 + 1 ) ( x 2 + 2 ) ⇔ x 4 + x 2 + 20 = x 4 + 3 x 2 + 2 ⇔ 2 x 2 = 18 ⇔ x 2 = 9 ⇔ x = ± 3
Với x 2 = 9 ⇒ y 2 + y = 9 2 + 9 + 20 ⇔ y 2 + y − 110 = 0 ⇔ y = 10 ; y = − 11 ( t . m )
+ TH2 y ( y + 1 ) = ( x 2 + 2 ) ( x 2 + 3 ) ⇔ x 4 + x 2 + 20 = x 4 + 5 x 2 + 6 ⇔ 4 x 2 = 14 ⇔ x 2 = 7 2 ( l o ạ i )
+ TH3: y ( y + 1 ) = ( x 2 + 3 ) ( x 2 + 4 ) ⇔ 6 x 2 = 8 ⇔ x 2 = 4 3 ( l o ạ i )
+ TH4: y ( y + 1 ) = ( x 2 + 4 ) ( x 2 + 5 ) ⇔ 8 x 2 = 0 ⇔ x 2 = 0 ⇔ x = 0
Với x 2 = 0 ta có y 2 + y = 20 ⇔ y 2 + y − 20 = 0 ⇔ y = − 5 ; y = 4
Vậy PT đã cho có nghiệm nguyên (x;y) là :
(3;10), (3;-11), (-3; 10), (-3;-11), (0; -5), (0;4).
Giúp e vs plzz sắp thi vào 10 chuyên rồi
Cho x,y là các số thực thay đổi thỏa mãn điều kiện x2 +y2+xy=3.Tìm giá trị lớn nhất và nhỏ nhất của biểu thức x2+y2-xy
\(x^2+y^2+xy=3\)
Có \(x^2+y^2\ge2xy\) \(\Rightarrow3=x^2+y^2+xy\ge2xy+xy\) \(\Leftrightarrow xy\le1\)
\(x^2+y^2\ge-2xy\) \(\Rightarrow3=x^2+y^2+xy\ge-2xy+xy\) \(\Leftrightarrow-3\le xy\)
Đặt A= \(x^2+y^2-xy=\left(3-xy\right)-xy=3-2xy\)
mà \(-3\le xy\le1\) \(\Rightarrow9\ge3-2xy\ge1\)
=> minA=1 <=> \(\left\{{}\begin{matrix}xy=1\\x=y\end{matrix}\right.\) <=>x=y=1
maxA=9 <=>\(\left\{{}\begin{matrix}xy=-3\\x=-y\end{matrix}\right.\) <=>\(\left(x;y\right)=\left(\sqrt{3};-\sqrt{3}\right);\left(-\sqrt{3};\sqrt{3}\right)\)
Đặt \(P=x^2+y^2-xy\)
\(\Rightarrow\dfrac{P}{3}=\dfrac{x^2+y^2-xy}{3}=\dfrac{x^2+y^2-xy}{x^2+y^2+xy}\)
\(\dfrac{P}{3}=\dfrac{3x^2+3y^2-3xy}{3\left(x^2+y^2+xy\right)}=\dfrac{x^2+y^2+xy+2\left(x^2+y^2-2xy\right)}{3\left(x^2+y^2+xy\right)}\)
\(\dfrac{P}{3}=\dfrac{1}{3}+\dfrac{2\left(x-y\right)^2}{3\left(x^2+y^2+xy\right)}\ge\dfrac{1}{3}\Rightarrow P\ge1\)
\(P_{min}=1\) khi \(x=y=1\)
\(\dfrac{P}{3}=\dfrac{x^2+y^2-xy}{x^2+y^2+xy}=\dfrac{3\left(x^2+y^2+xy\right)-2\left(x^2+y^2+2xy\right)}{x^2+y^2+xy}=3-\dfrac{2\left(x+y\right)^2}{x^2+y^2+xy}\le3\)
\(\Rightarrow P\le9\)
\(P_{max}=9\) khi \(\left(x;y\right)=\left(\sqrt{3};-\sqrt{3}\right);\left(-\sqrt{3};\sqrt{3}\right)\)
Cho các số thực x, y dương và thỏa mãn log 2 x 2 + y 2 3 xy + x 2 + 2 log 2 x 2 + 2 y 2 + 1 ≤ log 2 8 xy .Tìm giá trị nhỏ nhất của biểu thức P = 2 x 2 - xy + 2 y 2 2 xy - y 2 .