cho A=51n+47102.Chứng tỏ rằng A chia hết cho 10
chứng tỏ rằng : a=10! + 1.3.5...9 chia hết cho 5
chứng tỏ rằng : b=10! + 1.3.5...9 + 2009 chia hết cho 2
chứng tỏ rằng : c= 17^17 + 13^13 chia hết cho 2 và 5
chứng tỏ rằng : d= 17^17 - 13^13 chia hết cho 2 nhưng ko chia hết cho 5
a) chứng tỏ rằng (101234+2)chia hết cho 3
b)chứng tỏ rằng (10789 +8) chia hết cho 9
a)101234+2)=10+2=12
Vì 12 chia hết cho 3 nên (101234+2)chia hết cho 3
b)(10789+8)=10+8=18
Vì 18 chia hết 9 nên (10799+8) chia hết cho 9
a) chứng tỏ rằng a= 9^11+1 chia hết cho cả 2 và 5
b) chứng tỏ rằng a= 9^2n+1chia hết cho 10
1 Chứng tỏ rằng
a ) 10 ^21 +20 chia hết cho 6
b) 10^2015 +8 chia hết cho 18
2 Chứng tỏ rằng vs mọi số tự nhiên n thì ( n +n ) . ( n + 12 ) chia hết cho 2
3 Chứng tỏ rằng tính các ba số chẵn liên tiếp chia hết cho 48
a)Chứng tỏ rằng 91945-21930 chia hết cho 5
b)Chứng tỏ rằng 42010 +22014 chia hết cho 10
a/ Ta có :
\(9^{1945}-2^{1930}=\left(9^5\right)^{389}-\left(2^{10}\right)^{193}=\left(.....9\right)-\left(.....4\right)=\left(............5\right)⋮5\)
\(\Leftrightarrowđpcm\)
Chứng tỏ rằng :
a, 10^33 + 8 chia hết cho 18
b, 10^10 + 14 chia hết cho 6
1033+8=10...000(33 chữ số 0)+8=10...008(32 chữ số 0) có:
+) Chữ số tận cùng 8 chia hết cho 2
+) Tổng các chữ số: 1+0+...+0+0+8=1+8=9 chia hết cho 9
Mà 2 & 9 nguyên tố cùng nhau
=> 1033+8 chia hết cho 18(2.9=18)
=> đpcm
a)1033 + 8 = 1000......00008 (có 32 chữ số 0)
Phân tích:
18 = 2.9
Tận cùng là 8 => chia hết cho 2
Tổng các chữ số là 9 => chia hết cho 9
=> chia hết cho 18
b, 10^10 + 14
=100...00+14 (10 số 0)
=10...014(8 số 0)
Tận cùng là 4 nên chia hết cho 2 (1)
Tổng các chữ số là : 1+1+4=6 chia hết cho 3 (2)
Từ (1) và (2) => 10^10 + 14 chia hết cho 6
l i k e nha !
chứng tỏ rằng:
a) 10^33 + 8 chia hết cho 18
b) 10^10 + 14 chia hết cho 6
Bài 1: chi A= m2 + m+1 với m thuộc N. Chứng tỏ rằng:
a) A không chia hết cho 2
b) A không chia hết cho 5
Bài 2: Cho P= 2+22+23+...+210
Chứng tỏ rằng:
a) P chia hết cho 3
b) P chia hết cho 31
Bài 3: cho Q=3+32+33+...+312
Chứng tỏ rằng:
a) Q chia hết cho 4
b) Q chia hết cho 10
c) Q chia hết cho 13
Bài 1)
a) Ta có: \(A=m^2+m+1=m(m+1)+1\)
Vì $m,m+1$ là hai số tự nhiên liên tiếp nên tích của chúng chia hết cho $2$ hay $m(m+1)$ chẵn
Do đó $m(m+1)+1$ lẻ nên $A$ không chia hết cho $2$
b)
Nếu \(m=5k(k\in\mathbb{N})\Rightarrow A=25k^2+5k+1=5(5k^2+k)+1\) chia 5 dư 1
Nếu \(m=5k+1\Rightarrow A=(5k+1)^2+(5k+1)+1=25k^2+15k+3\) chia 5 dư 3
Nếu \(m=5k+2\Rightarrow A=(5k+2)^2+(5k+2)+1=25k^2+25k+7\) chia 5 dư 2
Nếu \(m=5k+3\Rightarrow A=(5k+3)^2+(5k+3)+1=25k^2+35k+13\) chia 5 dư 3
Nếu \(m=5k+4\) thì \(A=(5k+4)^2+(5k+4)+1=25k^2+45k+21\) chia 5 dư 1
Như vậy tóm tại $A$ không chia hết cho 5
Bài 2:
a) \(P=2+2^2+2^3+...+2^{10}\)
\(=(2+2^2)+(2^3+2^4)+(2^5+2^6)+...+(2^9+2^{10})\)
\(=2(1+2)+2^3(1+2)+2^5(1+2)+..+2^9(1+2)\)
\(=3(2+2^3+2^5+..+2^9)\vdots 3\)
Ta có đpcm
b) \(P=(2+2^2+2^3+2^4+2^5)+(2^6+2^7+2^8+2^9+2^{10})\)
\(=2(1+2+2^2+2^3+2^4)+2^6(1+2+2^2+2^3+2^4)\)
\(=(1+2+2^2+2^3+2^4)(2+2^6)=31(2+2^6)\vdots 31\)
Ta có dpcm.
Bài 3:
a,b) \(Q=3+3^2+3^3+...+3^{12}\)
\(Q=(3+3^2+3^3+3^4)+....+(3^9+3^{10}+3^{11}+3^{12})\)
\(=3(1+3+3^2+3^3)+3^5(1+3+3^2+3^3)+3^9(1+3+3^2+3^3)\)
\(=(1+3+3^2+3^3)(3+3^5+3^9)=40(3+3^5+3^9)\vdots 40\)
Do đó \(Q\vdots 10; Q\vdots 4\)
c) \(Q=(3+3^2+3^3)+(3^4+3^5+3^6)+...+(3^{10}+3^{11}+3^{12})\)
\(=3(1+3+3^2)+3^4(1+3+3^2)+...+3^{10}(1+3+3^2)\)
\(=13(3+3^4+...+3^{10})\vdots 13\)
Ta có đpcm.
b)
1.53. Chứng tỏ rằng:
a) 10^33 + 8 chia hết cho 18
b) 10^10 + 14 chia hết cho 6
1.54. Chứng tỏ rằng với mọi số tự nhiên n, tích (n+7) (n+8) luôn chia hết cho 2
1.55. Chứng tỏ rằng tích của 3 số tụ nhiên chắn liên tiêp chia hết cho 48
1.56. Cho n \(\in\)N*. Chứng tỏ rằng:
a (5^n - 1) \(⋮\)4
b) ( 10^n + 18n - 1) \(⋮\)27
1.57. Tìm số tự nhiên có 5 chữ số, các chữ số giống nhau, biết rắng số đó chia cho 5 dư 1 và chia hết cho 2
Bài 1Dùng 3 trong 4 số 5;4;3;2,hãy viết tất cả các số tự nhiên có 3 chữ số chia hết cho cả 3 số 2;3 và 9.
Bài 2 chứng tỏ rằng :
a) 1033+8 chia hết cho 18
b) 1010+14 chia hết cho 6
Bài 3 Chứng tỏ rằng với mọi số tự nhiên n,tích (n+7).(n+8) luôn chia hết cho 2
Bài 4 Cho n thuộc N*. Chứng tỏ rằng
a) (5n -1) chia hết cho 4
b) (10n + 18n - 1) chia hết cho 27
a)Các số tự nhiên chia hết cho 9 là :450;405;540;504
b)Chia hết cho 3 mà ko chia hết cho 9:345;354;453;435;543;534