Cho tam giác ABC vuông tại A . Cho AB =6 cm , BC =10 tính diện tích hình tam giác ABC
Cho tam giác ABC vuông tại A, đường cao AH
a) Viết công thức tính diện tích tam giác ABC
b) Cho AB = 6 cm, BC = 10 cm. Tính AC, AH, DT tam giác ABC
a) công thức . \(\frac{đáy.chiềucao}{2}\)
b) Áp dụng định lý pitago ta có
\(BC^2=AB^2+AC^2\)
=> AC^2=\(BC^2-AB^2=^{10^2}-6^2=64\)
=>\(AC=8\)
A)Xét tam giác ABC vuông tại A(gt),có:
SABC=(AB.AC)/2
B)Xét tam giác ABC vuông tại A(gt),có:
AB^2+AC^2=BC^2(ĐL Pytago)
Thay số:36+AC^×=100
<=>AC=căn64=8cm
Ta có:SABC=(AB.AC)/2
Thay số:SABC=24cm^2
Mà SABC=(AH.BC)/2
=>(AH.BC)/2=24
Thay số:AH=24.2:10=4,8cm
SABC=24CM^2(cmt)
Cho tam giác ABC cân tại A, BC = 15 cm, đường cao AH = 10 cm. Tính diện tích hình tam giác ABC , kẻ CK vuông với AB, tính CK
Cho tam giác ABC vuông tại A có BC = 10 cm và AC = 6 cm. Tính diện tích tam giác ABC
Theo định lý Pytago, ta có: AB2 + AC2 =BC2
Từ đó, tính được AB =8cm.
Áp dụng công thức tính diện tích tam giác: SABC = 0.5.AB.AC=24cm2
Cho tam giác ABC vuông tại A đường cao AH biết AB = 6 cm BC = 10 cm a) Tính độ dài đường cao AH và số đo B^ của tam giác ABC b) tính diện tích tam giác AHB
a: ΔABC vuông tại A
=>\(AB^2+AC^2=BC^2\)
=>\(AC^2=10^2-6^2=64\)
=>\(AC=\sqrt{64}=8\left(cm\right)\)
Xét ΔABC vuông tại A có AH là đường cao
nên \(AH\cdot BC=AB\cdot AC\)
=>\(AH\cdot10=6\cdot8=48\)
=>AH=48/10=4,8(cm)
Xét ΔABC vuông tại A có \(sinB=\dfrac{AC}{BC}=\dfrac{4}{5}\)
nên \(\widehat{B}\simeq53^0\)
b: Xét ΔABC vuông tại A có AH là đường cao
nên \(BH\cdot BC=BA^2\)
=>\(BH\cdot10=6^2=36\)
=>BH=36/10=3,6(cm)
ΔAHB vuông tại H
=>\(S_{HAB}=\dfrac{1}{2}\cdot HA\cdot HB=\dfrac{1}{2}\cdot4,8\cdot3,6=8,64\left(cm^2\right)\)
a) Để tính độ dài đường cao \(AH\) và số đo \(\angle B\), chúng ta có thể sử dụng các quy tắc trong tam giác vuông.
Chúng ta biết rằng trong tam giác vuông, độ dài của đường cao \(AH\) từ đỉnh vuông \(A\) xuống cạnh huyền \(BC\) có thể được tính bằng công thức:
\[AH = \frac{1}{2} \times BC\]
Trong trường hợp này:
\[AH = \frac{1}{2} \times 10 \, \text{cm} = 5 \, \text{cm}\]
Số đo của góc \(\angle B\) có thể được tính bằng cách sử dụng hàm tan trong tam giác vuông:
\[\tan B = \frac{AH}{AB}\]
\[\angle B = \arctan\left(\frac{AH}{AB}\right)\]
Trong trường hợp này:
\[\tan B = \frac{5}{6}\]
\[\angle B = \arctan\left(\frac{5}{6}\right)\]
Bạn có thể sử dụng máy tính để tính toán giá trị chính xác của \(\angle B\).
b) Để tính diện tích tam giác \(AHB\), chúng ta sử dụng công thức diện tích tam giác:
\[S_{AHB} = \frac{1}{2} \times \text{độ dài } AH \times \text{độ dài } AB\]
Trong trường hợp này:
\[S_{AHB} = \frac{1}{2} \times 5 \, \text{cm} \times 6 \, \text{cm} = 15 \, \text{cm}^2\]
Vậy, độ dài của đường cao \(AH\) là \(5 \, \text{cm}\), số đo của góc \(\angle B\) có thể được tính, và diện tích tam giác \(AHB\) là \(15 \, \text{cm}^2\).
Cho tam giác ABC vuông tại A biết AB = 6 cm BC = 10 cm đường phân giác BD ( D thuộc AC ) kẻ DE vuông góc BC chứng minh tam giác ECD tương đương tam giác ACB Tính AD? Tính tỉ số diện tích của tam giác ECD và tam giác ACB
a, Xét tam giác ECD và tam giác ACB ta có
^CED = ^CAB = 900
^C _ chung
Vậy tam giác ECD ~ tam giác ACB ( g.g )
b, Áp dụng định lí Pytago ta có :
\(AB^2+AC^2=BC^2\Rightarrow AC^2=BC^2-AB^2=100-36=64\Rightarrow AC=8\)cm
Do BD là đường phân giác ^B
\(\Rightarrow\dfrac{AB}{BC}=\dfrac{AD}{DC}\) mà \(DC=AC-AD=8-AD\)
\(\Rightarrow\dfrac{6}{10}=\dfrac{AD}{8-AD}\Rightarrow48-6AD=10AD\Rightarrow16AD=48\Rightarrow AD=3\)cm
Vậy AD = 3 cm
c, Ta có : \(\dfrac{S_{ECD}}{S_{ACB}}=\dfrac{\dfrac{1}{2}ED.EC}{\dfrac{1}{2}AC.AB}=\dfrac{ED.EC}{6.8}=\dfrac{ED.EC}{48}\)(*)
\(\dfrac{EC}{AC}=\dfrac{ED}{AB}=\dfrac{CD}{BC}\)( tỉ số đồng dạng ý a )
\(\Rightarrow\dfrac{EC}{8}=\dfrac{5}{10}\)( CD = AC - AD = 8 - 3 = 5 cm )
\(\Rightarrow EC=\dfrac{40}{10}=4\) cm (1)
\(\Rightarrow\dfrac{ED}{AB}=\dfrac{CD}{BC}\Rightarrow ED=\dfrac{AB.CD}{BC}=\dfrac{6.5}{10}=3\)cm (2)
Thay (1) ; (2) vào (*) ta được :
\(\dfrac{S_{ECD}}{S_{ACB}}=\dfrac{3.4}{48}=\dfrac{12}{48}=\dfrac{1}{4}\)
Câu 5: Cho tam giác ABC, đường cao AH = 9 dm, cạnh BC = 12 dm. Diện tích tam giác là:
A. 48 dm2 B. 84 dm2 C. 54 dm2 D. 56 dm2
Câu 6: Cho ∆ABC vuông tại A , biết AB = 6 cm, BC = 10 cm,diện tích tam giác ABC bằng:
A. 48cm2 B. 30cm2 C. 24cm2 D. 60cm2
Câu 7: Cho ∆ABC có đường cao AH, cạnh BC = 4,8cm và S∆ABC = 12cm2. Vậy đường cao AH có độ dài bao nhiêu?
A. 3cm B. 4cm C. 5cm D. 6cm
Câu 8: Cho tam giác có chiều cao là 2 cm, ứng với cạnh đáy 4 cm. Diện tích tam giác bằng bao
A. 6 B. 3 C. 6 D. 8
Câu 9: Cho ∆DEF có đường cao DH, cạnh EF = 4,8cm và S∆DEF = 12cm2. Vậy đường cao DH có độ dài bao nhiêu?
A. 3cm B. 4cm C. 5cm D. 6cm
Câu 10: Cho ∆DEF vẽ đường cao DH ứng với cạnh EF, biết AH = 6 cm và S∆DEF = 24cm2. Vậy cạnh EF có độ dài bao nhiêu?
A. 8cm B. 10cm C. 12cm D. 14cm
Câu 11: Cho , biết MN = 6cm, MP = 8cm. Diện tích
A. 48 B. C. 48cm D.
Câu 12: Cho hình chữ nhật ABCD có AB = 4cm; AC = 5cm. Diện tích hình chữ nhật ABCD là
A. 12cm vuông B 20cm vuông C 15cm vuông D 10cm vuông
Câu 11 A. 48〖cm〗^2 B. 〖24cm〗^2 C. 48cm D. 〖14cm〗^2
Câu 5: C
Câu 6:C
Câu 7:C
Câu 8: 4cm^2
Câu 9:C
Câu 10:A
Câu 11: Câu hỏi bị lỗi
Câu 12:A
Cho tam giác ABC có AB = 6 cm ; AC = 4,5 cm ; BC = 7,5 cm a) chứng minh tam giác ABC vuông tại A b) Kẻ đường cao AH (H thuộc BC) tính BH, HC, AH và góc B,C của tam giác c) Tính diện tích tam giác ABC d) tìm vị trí điểm M để diện tích tam giác ABC bằng diện tích tam giác MBC
a: Xét ΔABC có \(BC^2=AB^2+AC^2\)
nên ΔABC vuông tại A
c: \(S_{ABC}=\dfrac{AB\cdot AC}{2}=\dfrac{6\cdot4.5}{2}=3\cdot4.5=13.5\left(cm^2\right)\)
Cho tam giác ABC vuông tại A. Độ dài AB = 10 cm , AC= 18cm a) Tính diện tích tam giác ABC b) Biết BM =1/3 BC ; AN =1/2 AC . Nối M với N . Tính diện tích tứ giác BANM
a: S ABC=1/2*10*18=90cm2
b: S CMA=2/3*90=60cm2
=>S CNM=30cm2
=>S ANMB=60cm2
Cho tam giác ABC vuông tại A. Độ dài AB = 10 cm , AC= 18cm a) Tính diện tích tam giác ABC b) Biết BM =1/3 BC ; AN =1/2 AC . Nối M với N . Tính diện tích tứ giác BANM