Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
le vi dai
Xem chi tiết
Le vi dai
Xem chi tiết
Nameless
Xem chi tiết
Lê Việt
Xem chi tiết
Munz Bảo
26 tháng 2 2020 lúc 21:27

a) A= \(\frac{x\left(1-x^2\right)^2}{1+x^2}\): \(\left\{\left[\frac{\left(1-x\right)\left(1+x+x^2\right)}{1-x}+x\right]\left[\frac{\left(1+x\right)\left(1-x+x^2\right)}{1+x}-x\right]\right\}\)
A= \(\frac{x\left(1-x^2\right)^2}{1+x^2}\): (1+x+x2+x)(1-x+x2-x)
A=\(\frac{x\left(1-x^2\right)^2}{1+x^2}\): (1+2x+x2)(1-2x+x2)
A= \(\frac{x\left(1-x^2\right)^2}{1+x^2}\): (1+x)2(1-x)2
A= \(\frac{x\left(1-x^2\right)^2}{1+x^2}\): (1+x)(1+x)(1-x)(1-x)
A= \(\frac{x\left(1-x^2\right)\left(1-x^2\right)}{1+x^2}.\frac{1}{\left(1-x^2\right)\left(1-x^2\right)}\)
A= \(\frac{x}{1+x^2}\)
b)Thay x= \(-\frac{1}{2}\) vào biểu thức A, có:
A= \(\frac{\frac{-1}{2}}{1+\left(\frac{-1}{2}\right)^2}\)
\(\Leftrightarrow\)A= \(\frac{-2}{5}\)
Vậy A= \(\frac{-2}{5}\) khi x=\(-\frac{1}{2}\)
c) Để 2A=1 thì \(\frac{2x}{1+x^2}\)=1
\(\Leftrightarrow\)\(\frac{2x}{1+x^2}\)-1=0
\(\Leftrightarrow\)2x-1-x2=0
\(\Leftrightarrow\)-(2x+1+x2)=0
\(\Leftrightarrow\)x2-2x+1=0
\(\Leftrightarrow\)(x-1)2=0
\(\Leftrightarrow\)x-1=0
\(\Leftrightarrow\)x=1
Vậy x=1 thì 2A=1

Khách vãng lai đã xóa
Huỳnh Xuân Mai
Xem chi tiết
Kolima
Xem chi tiết
hoàng thị hoa
Xem chi tiết
Hoàng Thanh Tuấn
31 tháng 5 2017 lúc 21:30

Câu 1:

\(A=\frac{x\left(1-x^2\right)}{1+x^2}:\left[\left(\frac{\left(1-x\right)\left(x^2+x+1\right)}{1-x}+x\right)\left(\frac{\left(1+x\right)\left(x^2-x+1\right)}{1+x}+x\right)\right]\)

\(=\frac{x\left(1-x^2\right)}{x^2+1}:\left[\left(x^2+2x+1\right)\left(x^2-2x+1\right)\right]\)

\(=\frac{x\left(1-x^2\right)}{\left(1+x^2\right)\left(1+x\right)^2\left(x-1\right)^2}=\frac{x}{\left(1+x^2\right)\left(x^2-1\right)}=\frac{x}{x^4-1}\)

Câu 2: thay x vào A có :

\(A=\frac{-\frac{1}{2}}{\frac{1}{4}-1}=\frac{2}{3}\)

Câu c :

2A=1 => \(\frac{x}{x^4-1}=\frac{1}{2}\)ĐK \(\hept{\begin{cases}x\ne1\\x\ne-1\end{cases}}\)

\(\Leftrightarrow x^4-2x-1=0\Leftrightarrow\left(x+1\right)\left(x^3-x^2+x-1\right)=0\)

\(\left(x+1\right)\left(x^2+1\right)\left(x-1\right)=0\Leftrightarrow\orbr{\begin{cases}x=1\\x=-1\end{cases}}\)loại do điều kiện  vậy ko có giá trị nào của x thỏa mãn

Phạm Minh Quang
Xem chi tiết
Phạm Minh Quang
30 tháng 9 2019 lúc 21:50

@tth

Phạm Minh Quang
30 tháng 9 2019 lúc 21:52

@Neet

Phạm Minh Quang
30 tháng 9 2019 lúc 21:59

@ngonhuminh

Lê Lê
Xem chi tiết
tâm
20 tháng 9 2020 lúc 11:35

áp dụng các hằng đẳng thức đáng nhớta được :

1)25x^4-4

2)4a^2-1/4

3)9x^4-y^2

4)1/4x^2-1

5)9/16x^2-4

6)1/4x^4-(5x^2)y+25y^2

7)9a^4-1