Tìm x\(\in\)Z để A\(\in\) Z và tìm giá trị đó:
a) \(A=\frac{x+3}{x-2}\)
b) \(B=\frac{1-2x}{x+3}\)
Tìm \(x\in Z\) để A thuộc Z và tìm giá trị đó
a) \(A=\frac{x+3}{x-2}\)
b)\(B=\frac{1-2x}{2+x}\)
a)A=x+3/x-2
A=x-2+5/x-2
A=1+5/x-2
vì 1 thuộc Z nên để A thuộc Z thì 5 phải chia hết cho x-2
x-2 thuộc ước của 5
x-2 thuộc -5;-1;1;5
x = -3;1;3 hoặc 7
giá trị các biểu thức theo giá trị của x như trên và lần lượt là 0;-4;6;2
b)để B= 1-2x/2+x thuộc Z thì
1-2x phải chia hết cho 2+x
nên 1-2x-4+4 phải chia hết cho x+2
1-(2x+4)+4 phải chia hết cho x+2
1+4-[2(x+2] phải chia hết cho x+2
5 -[2(x+2] phải chia hết cho x+2
vì [2(x+2] chia hết cho x+2 nên 5 phải chia hết cho x+2
suy ra x+2 thuộc ước của 5
x+2 thuộc -5;-1;1;5
x=-7;-3;-1;3
giá trị các biểu thức theo giá trị của x như trên và lần lượt là -3;-7;3;-1
a) Tính B=\(\frac{x}{2x-2}-\frac{3}{2x+2}-\frac{1}{x^2-1}\)
b) Với x \(\in Z\), x \(\ne\pm1\). Hãy tìm các giá trị của x để B nhận giá trị nguyên.
1/ Cho biểu thức \(A=\frac{\sqrt{x}+2}{\sqrt{x}-3}-\frac{\sqrt{x}+1}{\sqrt{x}-2}-\frac{3\sqrt{x}-3}{x-5\sqrt{x}+6}\)
a)Tìm các giá trị của x để A<-1
b) Tìm các giá trị của \(x\in Z\) sao cho \(2A\in Z\)
2/ Cho \(A=\left(\frac{\sqrt{x}}{2}-\frac{1}{2\sqrt{x}}\right)\left(\frac{x-\sqrt{x}}{\sqrt{x}+1}-\frac{x+\sqrt{x}}{\sqrt{x}-1}\right)\)tìm các giá trị của x để A>-6
Tìm \(x\in Z\)để \(A\in Z\) và tìm giá trị đó: \(A=\frac{1-2x}{x+3}\)
Ta có: \(\frac{1-2x}{x+3}=\frac{-2\left(x+3\right)+7}{x+3}=-2+\frac{7}{x+3}\)
Để \(\frac{1-2x}{x+3}\in Z\Leftrightarrow x+3\inƯ\left(7\right)=\left\{-7;-1;1;7\right\}\)
Vậy nên \(x\in\left\{-10;-4;-2;4\right\}\)
chịu em chưa hc lớp 7 mới chỉ hc lớp 5
Bài 1: Cho \(A=\frac{\sqrt{x}-3}{2}\) Tìm \(x\in Z\)và \(x< 30\)để A có giá trị nguyên
Bài 2: Cho \(B=\frac{5}{\sqrt{x}-1}\)Tìm \(x\in Z\)để B có giá trị nguyên
Tìm x thuộc Z để A thuộc Z và tìm giá trị đó:
a) \(A=\frac{x+3}{x-2}\)
b) \(A=\frac{1-2x}{x+3}\)
a) \(A=\frac{x+3}{x-2}=\frac{x-2+5}{x-2}=1+\frac{5}{x-2}\)
để A \(\in\) Z thì x - 2 là ước của 5.
=> x – 2 \(\in\left\{\pm1;\pm5\right\}\)
* x = 3 => A = 6
* x = 7 => A = 2
* x = 1 => A = - 4
* x = -3 => A = 0
b) \(A=\frac{1-2x}{x+3}=\frac{7-2x-6}{x+3}=\frac{7-2\left(x+3\right)}{x+3}=\frac{7}{x+3}-2\)
- 2 để A \(\in\) Z thì x + 3 là ước của7.
=> x + 3 \(\in\left\{\pm1;\pm7\right\}\)
* x = -2 => A = 5
* x = 4 => A = -1
* x = -4 => A = - 9
* x = -10 => A = -3 .
Cho biểu thức : A= \(\frac{x^{2^{ }}+x}{x^2-2x+1}\): \(\left(\frac{x+1}{x}-\frac{1}{1-x}+\frac{2-x^2}{x^2-x}\right)\)
a) Rút gọn A
b) Tính giá trị của A khi |2x-5|=3
c) Tìm x để A=4
d)Tìm x để A<2
e) Tìm x\(\in\)Z để A\(\in\)Z
f) Tìm x\(\in\)Z để A\(\in\)N
g) Với x>1. Chứng minh rằng: A>1 \(\forall\)x
Tìm x thuộc Z để A thuộc Z và tìm giá trị đó:
a) A = \(\frac{x+3}{x-2}\)
b) B = \(\frac{1-2x}{x+3}\)
tìm x thuộc Z để A thuộc Z và tìm giá trị đó:
a) A = \(\frac{x+3}{x-2}\)
b) B = \(\frac{1-2x}{x+3}\)