Đặt điện áp xoay chiều $u=U\sqrt{2}\cos(\omega t+\phi)$ ( $U$ không đổi, $\omega$ thay đổi được). vào hai đầu đoạn mạch $AB$ mắc nối tiếp theo thứ tự gồm đoạn $AM$ chứa cuộn cảm thuần có độ tự cảm $L$, đoạn $MN$ chứa điện trở thuần $R$ và đoạn $NB$ chứa tụ điện có điện dung $C$. Khi $\omega =\omega_1$ và $\omega=\sqrt{3}\omega_1$ thì biểu thức của dòng điện trong mạch lần lượt là $i_1=I_0\cos(\omega_1t+\frac{\pi}{3})$ và $i_2=\sqrt{\frac{3}{2}}I_0\cos(\sqrt{3}\omega_1t-\frac{\pi}{12})$. Hãy tính $\frac{R^2L}{C}$