tìm số nguyên tố p sao cho b^2+14 là số nguyên tố.BÀ CON ƠI GIÚP TOI VOI
a) Tìm p là số tự nhiên sao cho p+1;p+2;p+4 đều là số nguyên tố.
b) Tìm số nguyên tố p sao cho 2p2+1 cũng là số nguyên tố.
c) Tìm số nguyên tố p sao cho p+10 và p+14 cũng là số nguyên tố
b) +) Nếu p = 3k + 1 (k thuộc N)=> 2p2 + 1 = 2.(3k + 1)2 + 1 = 2.(9k2 + 6k + 1) + 1 = 18k2 + 12k + 2 + 1 = 18k2 + 12k + 3 chia hết cho 3 và lớn hơn 3 => 2p2 + 1 là hợp số (loại)
+) Nếu p = 3k + 2 (k thuộc N) => 2p2 + 1 = 2.(3k + 2)2 + 1 = 2.(9k2 + 12k + 4) + 1 = 18k2 + 24k + 8 + 1 = 18k2 + 24k + 9 chia hết cho 3 và lớn hơn 3 => 2p2 + 1 là hợp số (loại)
Vậy p = 3k, mà p là số nguyên tố => k = 1 => p = 3
a) +) Nếu p = 1 => p + 1 = 2; p + 2 = 3; p + 4 = 5 là số nguyên tố
+) Nếu p > 1 :
p chẵn => p = 2k => p + 2= 2k + 2 chia hết cho 2 => p+ 2 là hợp số => loại
p lẻ => p = 2k + 1 => p + 1 = 2k + 2 chia hết cho 2 => p+1 là hợp số => loại
Vậy p = 1
c) p = 2 => p + 10 = 12 là hợp số => loại
p = 3 => p + 10 = 13; p+ 14 = 17 đều là số nguyên tố => p = 3 thỏa mãn
Nếu p > 3 , p có thể có dạng
+ p = 3k + 1 => p + 14 = 3k + 15 chia hết cho 3 => loại p = 3k + 1
+ p = 3k + 2 => p + 10 = 3k + 12 là hợp số => loại p = 3k + 2
Vậy p = 3
Tìm các số nguyên tố p sao cho:
a) p + 2 và p + 4 là số nguyên tố
b) p + 10 và p + 14 là số nguyên tố
Mọi người giải giúp mik nha .
a) p = 1 vì 1 + 2 = 3 , 3 > 1 và 3 \(⋮\) 1 và 3.
p = 1 vì 1 + 4 = 5 , 5 > 1 và 5 \(⋮\)1 và 5.
b) p = 1 vì 10 + 1 = 11, 11 > 1 và 11 \(⋮\) 1 và 11
p = 5 vì 5 + 14 = 19 , 19 > 1 và 19 \(⋮\) 1 và 19
a) p = 1 vì 1 + 2 = 3 , 3 > 1 và 3 ⋮ 1 và 3.
p = 1 vì 1 + 4 = 5 , 5 > 1 và 5 ⋮ 1 và 5.
b) p = 1 vì 10 + 1 = 11, 11 > 1 và 11 ⋮ 1 và 11
p = 5 vì 5 + 14 = 19 , 19 > 1 và 19 ⋮ 1 và 19
Tìm số nguyên tố p sao cho:
a) p+2 và p+4 là số nguyên tố(giải thích)
b) p+10 và p+14 là số nguyên tố(giải thích)
c) p+2 ; p+6 ; p+8 là số nguyên tố(giải thích)
Ban nào giải được thì giúp mình nhé !
a. A=(p;p+2;p+4)
p=2=>A=(2,4,6)loai vay P phai le
Tập hợp 3 số lẻ liên tiếp phải có số chia hết cho 3
Vậy P =3
A=(3,5,7)
b.A=(p,p+10,p+14); p=2
P=1=> A=(3,13,17) nhan
P>3 (p nguyen to do vay p co dang p=3n+1 &3n+2)
*TH1; P co dang p=3n+1
P+10=3n+11
P+14=3n+15 chia het cho 3=> loai P=3n+1
*TH2; P co dang p=3n+2
P+10=3n+12 chia het cho 3 => loai p=3n+2
vay P=3 duy nhat
c. A=(p,p+2,p+6,p+8)
p=2 loai
p=3=> A=(3.5,9,11) loai
p=5=>A=(5,7,11,13) nhan
P=11A=(11,13,17,19) nhan
xet P>11
tuong tu (b) xe ra hoi dai
de xem co cach ngan hon ko
Mn ơi giúp mình với!
Bài 1: Tìm các số tự nhiên n sao cho 4n + 22 là số nguyên tố.
Bài 2: Tìm số nguyên tố p sao cho p + 10 và p + 20 là số nguyên tố.
Cảm ơn mn rất nhiều ạ!!!:3333
Tìm số nguyên tố p sao cho
A. p, p+2, p+4 là các số nguyên tố
B. p+10,p+14 là các số nguyên tố
C. p+2,p+6,p+8,p+14 là các số nguyên tố
a)- nếu p= 2 => p là HS (loại)
- nếu p= 3=> p+2= 3+ 2= 5 ( SNT) => t/m
p+4= 3+4= 7 (SNT) => t/m
- Nếu p nguyên tố> 3 => P:3 dư1 => P= 3k+1
P:3 dư 2 => P= 3k +2
+ P= 3k +1 =>p+2 = (3k+1)+2 =3k+3 chia hết cho 3 ( t/m)
+ P= 3k +2 =>p+4 = (3k+2)+ 4 =3k + 6 chia hết cho 3 (t/m )
Vậy P=3
Tìm số nguyên tố p sao cho
A. p, p+2, p+4 là các số nguyên tố
B. p+10,p+14 là các số nguyên tố
C. p+2,p+6,p+8,p+14 là các số nguyên tố
a)- nếu p= 2 => p là HS (loại)
- nếu p= 3=> p+2= 3+ 2= 5 ( SNT) => t/m
p+4= 3+4= 7 (SNT) => t/m
- Nếu p nguyên tố> 3 => P:3 dư1 => P= 3k+1
P:3 dư 2 => P= 3k +2
+ P= 3k +1 =>p+2 = (3k+1)+2 =3k+3 chia hết cho 3 ( t/m)
+ P= 3k +2 =>p+4 = (3k+2)+ 4 =3k + 6 chia hết cho 3 (t/m )
Vậy P=3
a)- nếu p= 2 => p là HS (loại)
- nếu p= 3=> p+2= 3+ 2= 5 ( SNT) => t/m
p+4= 3+4= 7 (SNT) => t/m
- Nếu p nguyên tố> 3 => P:3 dư1 => P= 3k+1
P:3 dư 2 => P= 3k +2
+ P= 3k +1 =>p+2 = (3k+1)+2 =3k+3 chia hết cho 3 ( t/m)
+ P= 3k +2 =>p+4 = (3k+2)+ 4 =3k + 6 chia hết cho 3 (t/m )
Vậy P=3
1. tìm số nguyên tố p,q sao cho
a) p+10,p+14 là các sô nguyên tố
b) q+2,q+10 là các số nguyên tố
a)nếu p=2 thì :
p+10=2+10=12 là hợp số(loại)
nếu p=3 thì:
p+10=3+10=13 là số nguyên tố
p+14=3+14=17 là số nguyên tố
(thỏa mãn)
nếu p>3 thì:
p sẽ bằng 3k+1 hoặc 3k+2
trường hợp 1:p=3k+1
nếu p=3k+1 thì:
p+14=3k+1+14=3k+15=3 nhân (k+5)chia hết cho 3(3 chia hết cho3) là hợp số(loại)
trường hợp 2:p=3k+2
nếu p=3k+2 thì:
p+10=3k+2+10=3k+12=3 nhân (k + 4)chia hết cho 3(3 chia hết cho 3)là hợp số (loại)
vậy nếu p>3 thì không có giá trị nào thỏa mãn
vậy p=3
b)nếu q=2 thì :
q+10=2+10=12 là hợp số(loại)
nếu q=3 thì:
q+2=3+2=5 là số nguyên tố
q+10=3+10=13 là số nguyên tố
(thỏa mãn)
nếu q>3 thì:
q sẽ bằng 3k+1 hoặc 3k+2
trường hợp 1:q=3k+1
nếu q=3k+1 thì:
q+2=3k+1+2=3k+3=3 nhân (k+1)chia hết cho 3(3 chia hết cho3) là hợp số(loại)
trường hợp 2:q=3k+2
nếu q=3k+2 thì:
q+10=3k+2+10=3k+12=3 nhân (k + 4)chia hết cho 3(3 chia hết cho 3)là hợp số (loại)
vậy nếu q>3 thì không có giá trị nào thỏa mãn
vậy q=3
Bài1:Các số sau là nguyên tố hay hợp số
a) 123456789 + 729
b) 5.7.8.9.11-132
Bài 2: Tìm số nguyên tố sao cho
a)P+2 và P+4 cũng là số nguyên tố
b)P+10 và P+14 cũng là số nguyên tố
Bài 1 :
a) \(123456789+729=\text{123457518}⋮2\)
⇒ Số trên là hợp số
b)\(5.7.8.9.11-132=\text{27588}⋮2\)
⇒ Số trên là hợp số
Bài 2 :
a) \(P+2\&P+4\) ;à số nguyên tố
\(\Rightarrow\dfrac{P+2}{P+4}=\pm1\)
\(\Rightarrow\left[{}\begin{matrix}\dfrac{P+2}{P+4}=1\\\dfrac{P+2}{P+4}=-1\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}P+2=P+4\\P+2=-P-4\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}0.P=2\left(x\in\varnothing\right)\\2.P=-6\end{matrix}\right.\)
\(\Rightarrow P=-3\)
Câu b tương tự
a,123456789+729=123457518(hợp số)
b,5x7x8x9x11-132=27588(hợp số)
Bài 2,
a,Nếu P=2=>p+2=4 và p+4=6 (loại)
Nếu P=3=>p+2=5 và p+4=7(t/m)
P>3 => P có dạng 3k+1 hoặc 3k+2(k ϵn,k>0)
Nếu p=3k+1=>p+2=3k+3 ⋮3( loại)
Nếu p=3k+2=>p+4=3k+6⋮3(loại)
Vậy p=3 thỏa mãn đề bài
b,Nếu p=2=>p+10=12 và p+14=16(loại)
Nếu p=3=>p+10=13 và p+14=17(t/m)
Nếu p >3=>p có dạng 3k+1 hoặc 3k+2
Nếu p=3k+1=>p+14=3k+15⋮3(loại)
Nếu p=3k+2=>p+10=3k+12⋮3(loại)
Vậy p=3 thỏa mãn đề bài.
Tìm số nguyên tố p sao cho: a) p+2, p+4 đều là số nguyên tố; b) p+10, p+14 đều là số nguyên tố
Tìm số nguyên tố p sao cho:
a) p + 4; p + 8 là số nguyên tố;
b) p + 4; p+14 là số nguyên tố.
a) Với p = 2 thì p + 4; p + 8 không là số nguyên tố.
Với p = 3 thì p + 4; p + 8 là các số nguyên tố.
Nếu p > 3 mà p là số nguyên tố => p = 3k +1 hoặc p = 3k +2 (k ϵ N*)
Ta thấy nếu p = 3k + 1 thì p + 8 = 3k + l + 8 = 3k + 9=> p chia hết cho 3 (loại).
Ta thấy nếu p = 3k + 2 thì p + 4 = 3k + 2 + 4 = 3k + 6 => p chia hết cho 3 (loại).
Vậy ta đã chứng minh được p = 3 là giá trị duy nhất thỏa mãn điều kiện đề bài.
b) Tương tự 21A.
p = 3 là giá trị duy nhất thỏa mãn điều kiện đề bài.